ebook img

Consistent Quantum Theory PDF

407 Pages·2002·1.532 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Consistent Quantum Theory

Consistent Quantum Theor y Robert B.Grif(cid:222)ths CONSISTENT QUANTUM THEORY Quantummechanicsisoneofthemostfundamentalyetdifficultsubjectsinmodern physics. Inthisbook,nonrelativisticquantumtheoryispresentedinaclearandsys- tematicfashionthatintegratesBorn’sprobabilisticinterpretationwithSchro¨dinger dynamics. Basicquantumprinciplesareillustratedwithsimpleexamplesrequiringnomath- ematics beyond linear algebra and elementary probability theory, clarifying the mainsourcesofconfusionexperiencedbystudentswhentheybeginaseriousstudy ofthesubject. Thequantummeasurementprocessisanalyzedinaconsistentway using fundamental quantum principles that do not refer to measurement. These same principles are used to resolve several of the paradoxes that have long per- plexed quantum physicists, including the double slit and Schro¨dinger’s cat. The consistenthistoriesformalismusedinthisbookwasfirstintroducedbytheauthor, andextendedbyM.Gell-Mann,J.B.Hartle,andR.Omne`s. Essential for researchers, yet accessible to advanced undergraduate students in physics, chemistry, mathematics, andcomputerscience, thisbookmaybeusedas a supplement to standard textbooks. It will also be of interest to physicists and philosophersworkingonthefoundationsofquantummechanics. ROBERT B. GRIFFITHS is the Otto Stern University Professor of Physics at Carnegie-Mellon University. In 1962 he received his PhD in physics from Stan- fordUniversity. CurrentlyaFellowoftheAmericanPhysicalSocietyandmember of the National Academy of Sciences of the USA, he received the Dannie Heine- manPrizeforMathematicalPhysicsfromtheAmericanPhysicalSocietyin1984. Heistheauthororcoauthorof130papersonvarioustopicsintheoreticalphysics, mainlystatisticalandquantummechanics. This Page Intentionally Left Blank Consistent Quantum Theory RobertB.Griffiths Carnegie-MellonUniversity PUBLISHED BY CAMBRIDGE UNIVERSITY PRESS (VIRTUAL PUBLISHING) FOR AND ON BEHALF OF THE PRESS SYNDICATE OF THE UNIVERSITY OF CAMBRIDGE The Pitt Building, Trumpington Street, Cambridge CB2 IRP 40 West 20th Street, New York, NY 10011-4211, USA 477 Williamstown Road, Port Melbourne, VIC 3207, Australia http://www.cambridge.org © R. B. Griffiths 2002 This edition © R. B. Griffiths 2003 First published in printed format 2002 A catalogue record for the original printed book is available from the British Library and from the Library of Congress Original ISBN 0 521 80349 7 hardback ISBN 0 511 01894 0 virtual (netLibrary Edition) This Page Intentionally Left Blank Contents Preface pagexiii 1 Introduction 1 1.1 Scopeofthisbook 1 1.2 Quantumstatesandvariables 2 1.3 Quantumdynamics 3 1.4 MathematicsI.Linearalgebra 4 1.5 MathematicsII.Calculus,probabilitytheory 5 1.6 Quantumreasoning 6 1.7 Quantummeasurements 8 1.8 Quantumparadoxes 9 2 Wavefunctions 11 2.1 Classicalandquantumparticles 11 2.2 Physicalinterpretationofthewavefunction 13 2.3 Wavefunctionsandposition 17 2.4 Wavefunctionsandmomentum 20 2.5 Toymodel 23 3 LinearalgebrainDiracnotation 27 3.1 Hilbertspaceandinnerproduct 27 3.2 Linearfunctionalsandthedualspace 29 3.3 Operators,dyads 30 3.4 Projectorsandsubspaces 34 3.5 Orthogonalprojectorsandorthonormalbases 36 3.6 Columnvectors,rowvectors,andmatrices 38 3.7 DiagonalizationofHermitianoperators 40 3.8 Trace 42 3.9 Positiveoperatorsanddensitymatrices 43 vii viii Contents 3.10 Functionsofoperators 45 4 Physicalproperties 47 4.1 Classicalandquantumproperties 47 4.2 Toymodelandspinhalf 48 4.3 Continuousquantumsystems 51 4.4 Negationofproperties(NOT) 54 4.5 Conjunctionanddisjunction(AND,OR) 57 4.6 Incompatibleproperties 60 5 Probabilitiesandphysicalvariables 65 5.1 Classicalsamplespaceandeventalgebra 65 5.2 Quantumsamplespaceandeventalgebra 68 5.3 Refinement,coarsening,andcompatibility 71 5.4 Probabilitiesandensembles 73 5.5 Randomvariablesandphysicalvariables 76 5.6 Averages 79 6 Compositesystemsandtensorproducts 81 6.1 Introduction 81 6.2 Definitionoftensorproducts 82 6.3 Examplesofcompositequantumsystems 85 6.4 Productoperators 87 6.5 Generaloperators,matrixelements,partialtraces 89 6.6 Productpropertiesandproductofsamplespaces 92 7 Unitarydynamics 94 7.1 TheSchro¨dingerequation 94 7.2 Unitaryoperators 99 7.3 Timedevelopmentoperators 100 7.4 Toymodels 102 8 Stochastichistories 108 8.1 Introduction 108 8.2 Classicalhistories 109 8.3 Quantumhistories 111 8.4 Extensionsandlogicaloperationsonhistories 112 8.5 Samplespacesandfamiliesofhistories 116 8.6 Refinementsofhistories 118 8.7 Unitaryhistories 119 9 TheBornrule 121 9.1 Classicalrandomwalk 121 Contents ix 9.2 Single-timeprobabilities 124 9.3 TheBornrule 126 9.4 Wavefunctionasapre-probability 129 9.5 Application: Alphadecay 131 9.6 Schro¨dinger’scat 134 10 Consistenthistories 137 10.1 Chainoperatorsandweights 137 10.2 Consistencyconditionsandconsistentfamilies 140 10.3 Examplesofconsistentandinconsistentfamilies 143 10.4 Refinementandcompatibility 146 11 Checkingconsistency 148 11.1 Introduction 148 11.2 Supportofaconsistentfamily 148 11.3 Initialandfinalprojectors 149 11.4 Heisenbergrepresentation 151 11.5 Fixedinitialstate 152 11.6 Initialpurestate. Chainkets 154 11.7 Unitaryextensions 155 11.8 Intrinsicallyinconsistenthistories 157 12 Examplesofconsistentfamilies 159 12.1 Toybeamsplitter 159 12.2 Beamsplitterwithdetector 165 12.3 Time-elapsedetector 169 12.4 Toyalphadecay 171 13 Quantuminterference 174 13.1 Two-slitandMach–Zehnderinterferometers 174 13.2 ToyMach–Zehnderinterferometer 178 13.3 Detectorinoutputofinterferometer 183 13.4 Detectorininternalarmofinterferometer 186 13.5 Weakdetectorsininternalarms 188 14 Dependent(contextual)events 192 14.1 Anexample 192 14.2 Classicalanalogy 193 14.3 Contextualpropertiesandconditionalprobabilities 195 14.4 Dependenteventsinhistories 196 15 Densitymatrices 202 15.1 Introduction 202 x Contents 15.2 Densitymatrixasapre-probability 203 15.3 Reduceddensitymatrixforsubsystem 204 15.4 Timedependenceofreduceddensitymatrix 207 15.5 Reduceddensitymatrixasinitialcondition 209 15.6 Densitymatrixforisolatedsystem 211 15.7 Conditionaldensitymatrices 213 16 Quantumreasoning 216 16.1 Somegeneralprinciples 216 16.2 Example: Toybeamsplitter 219 16.3 Internalconsistencyofquantumreasoning 222 16.4 Interpretationofmultipleframeworks 224 17 MeasurementsI 228 17.1 Introduction 228 17.2 Microscopicmeasurement 230 17.3 Macroscopicmeasurement,firstversion 233 17.4 Macroscopicmeasurement,secondversion 236 17.5 Generaldestructivemeasurements 240 18 MeasurementsII 243 18.1 Beamsplitterandsuccessivemeasurements 243 18.2 Wavefunctioncollapse 246 18.3 NondestructiveStern–Gerlachmeasurements 249 18.4 Measurementsandincompatiblefamilies 252 18.5 Generalnondestructivemeasurements 257 19 Coinsandcounterfactuals 261 19.1 Quantumparadoxes 261 19.2 Quantumcoins 262 19.3 Stochasticcounterfactuals 265 19.4 Quantumcounterfactuals 268 20 Delayedchoiceparadox 273 20.1 Statementoftheparadox 273 20.2 Unitarydynamics 275 20.3 Someconsistentfamilies 276 20.4 Quantumcointossandcounterfactualparadox 279 20.5 Conclusion 282 21 Indirectmeasurementparadox 284 21.1 Statementoftheparadox 284 21.2 Unitarydynamics 286

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.