ebook img

Consequence Finding in Modal Logic [PhD Thesis] PDF

214 Pages·2009·2.088 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Consequence Finding in Modal Logic [PhD Thesis]

TTHHEESSEE En vue de l'obtention du DDOOCCTTOORRAATT DDEE LL’’UUNNIIVVEERRSSIITTÉÉ DDEE TTOOUULLOOUUSSEE Délivré par l'Université Toulouse III - Paul Sabatier Discipline ou spécialité : Informatique Présentée et soutenue par Meghyn BIENVENU Le 7 mai 2009 Titre : La génération de conséquences en logique modale JURY BLACKBURN Patrick, DR INRIA Nancy (membre) GASQUET Olivier PR Université Paul Sabatier (membre) HERZIG Andreas, DR Université Paul Sabatier (directeur de thèse) LANG Jérôme, DR Université Paris Dauphine (directeur de thèse) MARQUIS Pierre, PR Université d'Artois (rapporteur) MENGIN Jérôme, MCF Université Paul Sabatier (directeur de thèse) ROUSSET Marie-Christine, PR Université de Grenoble (membre) WOLTER Frank, PR University of Liverpool (rapporteur) Ecole doctorale : Mathématiques, Informatique, et Télécommunications Unité de recherche : Institut de Recherche en Informatique de Toulouse Directeur(s) de Thèse : Andreas Herzig, Jérôme Lang, et Jérôme Mengin Rapporteurs : Pierre Marquis et Frank Wolter Consequence Finding in Modal Logic Meghyn Bienvenu To Morfar Acknowledgements First of all, I would like to thank my thesis advisors Andreas Herzig, J´erome Lang, and J´erome Mengin for all of the advice, support, and encouragement they have provided me over these past few years. I feel truly lucky to have had such excellent thesis advisors, and I sincerely hope that we will find find opportunities to work together again in the future. I would also like to thank Pierre Marquis and Frank Wolter for kindly accepting to review this thesis, and Patrick Blackburn, Olivier Gasquet, and Marie-Christine Rousset for agreeing to participate in my jury. A special thanks to Sheila McIlraith, my undergraduatesummerproject supervisor andfirstco-author, forhelpingmetake my firststeps asaresearcher andfor always looking out for me as if I were one of her students. To my friends and colleagues from the LILaC and RPDMP teams at IRIT, thank you for all of the lunches, coffee breaks, and evenings we shared together. I only regret that I was not able to spend more time in Toulouse during my thesis. To my family, thank you for your continued support over the years, and for flying all the way across the ocean to attend my defense. It meant so much to me to have you all there. Finally, to Laurent, thank you not only for helping me through the stressful mo- ments, but most of all, for being there to share the happy ones. v Contents 1 Introduction 1 2 The Modal Logic K 11 n 2.1 Syntax . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 2.2 Semantics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 2.3 Logical Consequence . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 2.4 Basic Transformations . . . . . . . . . . . . . . . . . . . . . . . . . . 20 2.5 Basic Reasoning Tasks . . . . . . . . . . . . . . . . . . . . . . . . . . 27 2.6 Uniform Interpolation . . . . . . . . . . . . . . . . . . . . . . . . . . 33 2.7 Relation to First-Order Logic . . . . . . . . . . . . . . . . . . . . . . 41 2.8 Relation to Description Logics. . . . . . . . . . . . . . . . . . . . . . 42 2.8.1 A short introduction to description logics . . . . . . . . . . . 43 2.8.2 The description logic ALC . . . . . . . . . . . . . . . . . . . . 44 2.8.3 The description logic ALE . . . . . . . . . . . . . . . . . . . . 46 3 Prime Implicates and Prime Implicants in K 51 n 3.1 Defining Clauses and Terms in K . . . . . . . . . . . . . . . . . . . 51 n 3.1.1 Impossibility result . . . . . . . . . . . . . . . . . . . . . . . . 52 3.1.2 Analysis of candidate definitions . . . . . . . . . . . . . . . . 54 3.1.3 Summary and discussion . . . . . . . . . . . . . . . . . . . . . 66 3.2 Defining Prime Implicates and Prime Implicants in K . . . . . . . . 67 n 3.2.1 Basic definitions . . . . . . . . . . . . . . . . . . . . . . . . . 67 3.2.2 Desirable properties . . . . . . . . . . . . . . . . . . . . . . . 68 3.2.3 Analysis of candidate definitions . . . . . . . . . . . . . . . . 69 4 Generating and Recognizing Prime Implicates 79 4.1 Prime Implicate Generation . . . . . . . . . . . . . . . . . . . . . . . 79 4.1.1 Prime implicate generation in propositional logic . . . . . . . 79 vii viii 4.1.2 The algorithm GenPI . . . . . . . . . . . . . . . . . . . . . . 80 4.1.3 Correctness of GenPI . . . . . . . . . . . . . . . . . . . . . . 82 4.1.4 Bounds on prime implicate size . . . . . . . . . . . . . . . . . 85 4.1.5 Bounds on the number of prime implicates . . . . . . . . . . 92 4.1.6 Improving the efficiency of GenPI . . . . . . . . . . . . . . . 95 4.2 Prime Implicate Recognition . . . . . . . . . . . . . . . . . . . . . . 100 4.2.1 Lower bound . . . . . . . . . . . . . . . . . . . . . . . . . . . 100 4.2.2 Na¨ıve approach . . . . . . . . . . . . . . . . . . . . . . . . . . 100 4.2.3 Decomposition theorem . . . . . . . . . . . . . . . . . . . . . 101 4.2.4 Prime implicate recognition for propositional clauses . . . . . 106 4.2.5 Prime implicate recognition for 2-formulae . . . . . . . . . . 107 4.2.6 Prime implicate recognition for 3-formulae . . . . . . . . . . 108 4.2.7 The algorithm TestPI . . . . . . . . . . . . . . . . . . . . . . 113 5 Restricted Consequence Finding 119 5.1 New prime implicates . . . . . . . . . . . . . . . . . . . . . . . . . . 119 5.1.1 Properties of new prime implicates . . . . . . . . . . . . . . . 120 5.1.2 Generating and recognizing new prime implicates . . . . . . . 122 5.2 Signature-bounded prime implicates . . . . . . . . . . . . . . . . . . 123 5.2.1 Properties of signature-bounded prime implicates . . . . . . . 124 5.2.2 Generating signature-bounded prime implicates . . . . . . . . 128 5.2.3 Recognizing signature-bounded prime implicates . . . . . . . 128 6 Prime Implicate Normal Form 131 6.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131 6.2 Definition of Prime Implicate Normal Form . . . . . . . . . . . . . . 132 6.3 Properties of Prime Implicate Normal Form . . . . . . . . . . . . . . 135 6.3.1 Tractable entailment . . . . . . . . . . . . . . . . . . . . . . . 135 6.3.2 Tractable uniform interpolation . . . . . . . . . . . . . . . . . 153 6.3.3 Canonicity . . . . . . . . . . . . . . . . . . . . . . . . . . . . 167 6.4 Computing Prime Implicate Normal Form . . . . . . . . . . . . . . . 170 6.5 Spatial Complexity of Prime Implicate Normal Form . . . . . . . . . 173 6.6 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 177 6.6.1 Disjunctive form . . . . . . . . . . . . . . . . . . . . . . . . . 177 6.6.2 Linkless normal form . . . . . . . . . . . . . . . . . . . . . . . 179 7 Conclusion 183 A Complexity Theory 187 0. Contents ix Bibliography 189 Index 197

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.