ebook img

Conjugate Problems in Convective Heat Transfer PDF

400 Pages·2012·6.43 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Conjugate Problems in Convective Heat Transfer

Conjugate Problems in Convective Heat Transfer Abram S. Dorfman Boca Raton London New York CRC Press is an imprint of the Taylor & Francis Group, an informa business © 2010 by Taylor & Francis Group, LLC 8237X_C000.indd 3 7/24/09 6:33:43 PM CRC Press Taylor & Francis Group 6000 Broken Sound Parkway NW, Suite 300 Boca Raton, FL 33487-2742 © 2010 by Taylor and Francis Group, LLC CRC Press is an imprint of Taylor & Francis Group, an Informa business No claim to original U.S. Government works Printed in the United States of America on acid-free paper 10 9 8 7 6 5 4 3 2 1 International Standard Book Number: 978-1-4200-8237-1 (Hardback) This book contains information obtained from authentic and highly regarded sources. Reasonable efforts have been made to publish reliable data and information, but the author and publisher cannot assume responsibility for the validity of all materials or the consequences of their use. The authors and publishers have attempted to trace the copyright holders of all material reproduced in this publication and apologize to copyright holders if permission to publish in this form has not been obtained. If any copyright material has not been acknowledged please write and let us know so we may rectify in any future reprint. Except as permitted under U.S. Copyright Law, no part of this book may be reprinted, reproduced, transmit- ted, or utilized in any form by any electronic, mechanical, or other means, now known or hereafter invented, including photocopying, microfilming, and recording, or in any information storage or retrieval system, without written permission from the publishers. For permission to photocopy or use material electronically from this work, please access www.copyright. com (http://www.copyright.com/) or contact the Copyright Clearance Center, Inc. (CCC), 222 Rosewood Drive, Danvers, MA 01923, 978-750-8400. CCC is a not-for-profit organization that provides licenses and registration for a variety of users. For organizations that have been granted a photocopy license by the CCC, a separate system of payment has been arranged. Trademark Notice: Product or corporate names may be trademarks or registered trademarks, and are used only for identification and explanation without intent to infringe. Library of Congress Cataloging-in-Publication Data Dorfman, A. Sh. (Abram Shlemovich) Conjugate problems in convective heat transfer / Abram S. Dorfman. p. cm. -- (Heat transfer) Includes bibliographical references and index. ISBN 978-1-4200-8237-1 (hardcover : alk. paper) 1. Heat--Transmission. 2. Heat--Convection. 3. Fluid dynamics. I. Title. TJ260.D64 2009 621.402’25--dc22 2009018850 Visit the Taylor & Francis Web site at http://www.taylorandfrancis.com and the CRC Press Web site at http://www.crcpress.com © 2010 by Taylor & Francis Group, LLC 8237X_C000.indd 4 7/24/09 6:33:43 PM In Memory In memory of our dearest, lovely, loving daughter, Ella Fridman. © 2010 by Taylor & Francis Group, LLC 8237X_C000.indd 5 7/24/09 6:33:43 PM Contents List of Examples ....................................................................................................xi Preface .................................................................................................................xvii Acknowledgments .............................................................................................xxi The Author ........................................................................................................xxiii Introduction .......................................................................................................xxv Nomenclature ..................................................................................................xxvii Part I: Approximate Solutions Chapter 1 Analytical Methods for the Estimation of Heat Transfer from Nonisothermal Walls ............................................................................................3 1.1 Basic Equations...............................................................................................3 1.2 Self-Similar Solutions of the Boundary Layer Equations ........................4 1.3 Solutions of the Boundary Layer Equations in the Power Series ...........5 1.4 Integral Methods ............................................................................................7 1.5 Method of Superposition ............................................................................12 1.6 Solutions of the Boundary Layer Equations in the Series of Shape Parameters ....................................................................................16 References ...............................................................................................................18 Chapter 2 Approximate Solutions of Conjugate Problems in Convective Heat Transfer ........................................................................................................21 2.1 Formulation of a Conjugate Problem of Convective Heat Transfer ................................................................................................21 2.2 The Case of Linear Velocity Distribution across the Thermal Boundary Layer ............................................................................................22 2.3 The Case of Uniform Velocity Distribution across the Thermal Boundary Layer (Slug Flow) .......................................................................28 2.4 Solutions of the Conjugate Convective Heat Transfer Problems in the Power Series .......................................................................................35 2.5 Solutions of the Conjugate Heat Transfer Problems by Integral Methods .........................................................................................................46 References ...............................................................................................................50 vii © 2010 by Taylor & Francis Group, LLC 8237X_C000.indd 7 7/24/09 6:33:43 PM viii Contents Part II: Theory and Methods Chapter 3 Heat Transfer from Arbitrary Nonisothermal Surfaces in a Laminar Flow ...............................................................................55 3.1 The Exact Solution of the Thermal Boundary Layer Equation for an Arbitrary Surface Temperature Distribution ...............................55 3.2 Generalization for an Arbitrary Velocity Gradient in a Free Stream Flow ..................................................................................62 3.3 General Form of the Influence Function of the Unheated Zone: Convergence of the Series..............................................64 3.4 The Exact Solution of the Thermal Boundary Layer Equation for an Arbitrary Surface Heat Flux Distribution ....................69 3.5 Temperature Distribution on an Adiabatic Surface in an Impingent Flow ............................................................................................73 3.6 The Exact Solution of an Unsteady Thermal Boundary Layer Equation for Arbitrary Surface Temperature Distribution ....................75 3.7 The Exact Solution of a Thermal Boundary Layer Equation for a Surface with Arbitrary Temperature in a Compressible Flow ...........78 3.8 The Exact Solution of a Thermal Boundary Layer Equation for a Moving Continuous Surface with Arbitrary Temperature Distribution ...........................................................................79 3.9 The Other Solution of a Thermal Boundary Layer Equation for an Arbitrary Surface Temperature Distribution ...............................83 3.9.1 Non-Newtonian Fluid with a Power Law Rheology ..................83 3.9.2 The Effect of Mechanical Energy Dissipation .............................86 3.9.3 Axisymmetric Streamlined and Rotating Bodies .......................87 3.9.4 Thin Cylindrical Bodies ..................................................................89 References ...............................................................................................................91 Chapter 4 Heat Transfer from Arbitrary Nonisothermal Surfaces in Turbulent Flow ................................................................................................95 4.1 Basis Relations for the Equilibrium Boundary Layer .............................95 4.2 Solution of the Thermal Turbulent Boundary Layer Equation for an Arbitrary Surface Temperature Distribution ...............................99 4.3 Intensity of Heat Transfer from an Isothermal Surface: Comparison with Experimental Data .....................................................104 4.3.1 Reynolds Analogy .........................................................................104 4.3.2 Relations for Heat Transfer from an Isothermal Surface in Gradientless Flow ........................................................105 4.3.3 Relations for Heat Transfer from an Isothermal Surface in Gradient Flows.............................................................109 4.4 The Effect of the Turbulent Prandtl Number on Heat Transfer on Flat Plates ...............................................................................................111 © 2010 by Taylor & Francis Group, LLC 8237X_C000.indd 8 7/24/09 6:33:43 PM Contents ix 4.5 Coefficients g of Heat Flux Series for Nonisothermal Surfaces .........112 k 4.6 Approximate Relations for Heat Flux in a Transition Regime ............116 References .............................................................................................................118 Chapter 5 General Properties of Nonisothermal and Conjugate Heat Transfer ........121 5.1 The Effect of Temperature Head Distribution on Heat Transfer Intensity .......................................................................................................121 5.1.1 The Effect of the Temperature Head Gradient ..........................122 5.1.2 The Effect of Flow Regime ............................................................132 5.1.3 The Effect of Pressure Gradient ...................................................137 5.2 Gradient Analogy and Reynolds Analogy ............................................137 5.3 Heat Flux Inversion ...................................................................................141 5.4 Zero Heat Transfer Surfaces .....................................................................148 5.5 Examples of Optimizing Heat Transfer in Flow over Bodies..............150 References .............................................................................................................158 Chapter 6 Analytical Methods for Solving Conjugate Convective Heat Transfer Problems ..............................................................................................161 6.1 A Biot Number as a Criterion of the Conjugate Heat Transfer Rate ...............................................................................................161 6.2 General Boundary Condition for Convective Heat Transfer Problems: Errors Caused by Boundary Condition of the Third Kind ....162 6.3 Reduction of a Conjugate Convective Heat Transfer Problem to an Equivalent Heat Conduction Problem ..........................................166 6.4 Temperature Singularities on the Solid–Fluid Interface ......................179 6.4.1 Basic Equations...............................................................................179 6.4.2 Examples of Singularities for Different Flow Regimes and Conditions ...............................................................................181 6.4.3 Estimation of Accuracy of the Assumption of a Thermally Thin Body ....................................................................183 6.5 Universal Functions for Solving Conjugate Heat Transfer Problems — Solution Examples ...............................................................183 6.6 Reducing the Unsteady Conjugate Convective Heat Transfer Problem to an Equivalent Heat Conduction Problem ..........................198 6.6.1 Validity of Quasi-Steady Approximation — The Luikov Number as a Conjugate Criterion in Unsteady Heat Transfer .....199 6.6.2 Universal Eigenfunctions for Unsteady Conjugate Heat Transfer Problems ..........................................................................201 6.7 Integral Transforms and Similar Methods ............................................206 6.8 Solutions in Asymptotic Series in Eigenfunctions ...............................210 6.9 Superposition and Other Methods ..........................................................220 6.10 Green’s Function and the Method of Perturbation ...............................224 References .............................................................................................................227 © 2010 by Taylor & Francis Group, LLC 8237X_C000.indd 9 7/24/09 6:33:43 PM x Contents Chapter 7 Numerical Methods for Solving Conjugate Convective Heat Transfer Problems ....................................................................................231 7.1 Analytical and Numerical Methods .......................................................231 7.2 Approximate Analytical and Numerical Methods for Solving Differential Equations ...............................................................................234 7.3 Difficulties in Computing Convection-Diffusion and Flow ................240 7.3.1 The Control-Volume Finite-Difference Method ........................240 7.3.1.1 Computing Pressure and Velocity ................................240 7.3.1.2 Computing Convection–Diffusion ...............................242 7.3.1.3 False Diffusion .................................................................245 7.3.1.4 A Case of a Moderate Mach Number ...........................246 7.3.2 The Control-Volume Finite-Element Method ............................246 7.4 Numerial Methods of Conjugation .........................................................249 7.5 Examples of Numerical Studies of the Conjugate Convective Heat Transfer in Pipes and Channels .....................................................252 7.6 Examples of Numerical Studies of the Conjugate Convective Heat Transfer in Flows around and inside Bodies ................................264 References .............................................................................................................283 Part III: Applications Chapter 8 Thermal Treatment of Materials ....................................................................289 8.1 Moving Materials Undergoing Thermal Processing ............................289 8.2 Simulation of Industrial Processes ..........................................................296 8.3 Drying of Continuous Moving Materials...............................................307 References .............................................................................................................318 Chapter 9 Technological Processes ...................................................................................321 9.1 Multiphase and Phase-Change Processes ..............................................321 9.2 Drying and Food Processing ...................................................................333 References .............................................................................................................341 Chapter 10 Manufacturing Equipment Operation ..........................................................343 10.1 Heat Exchangers and Finned Surfaces ...................................................343 10.2 Cooling Systems .........................................................................................358 10.2.1 Electronic Packages .......................................................................358 10.2.2 Turbine Blades and Rockets .........................................................362 10.2.3 Cooling by Rewetting Surfaces ....................................................368 References .............................................................................................................377 Conclusion ...........................................................................................................379 © 2010 by Taylor & Francis Group, LLC 8237X_C000.indd 10 7/24/09 6:33:44 PM List of Examples Chapter 1 Example 1.1: The Effect of Boundary Conditions...............................................5 Example 1.2: Friction and Heat Transfer from an Arbitrary Nonisothermal Plate ......................................................................................8 Example 1.3: Calculating the Influence Function .............................................13 Example 1.4: Accuracy of Linear Velocity Distribution ...................................14 Chapter 2 Example 2.1: An Incompressible Flow with a Large Prandtl Number Past Plate with a Heat Source .....................................................................24 Example 2.2: Transient Heat Transfer in the Thermal Entrance Region of a Parallel Plate Channel with the Fully Developed Flow ..................25 Example 2.3: Transient Heat Transfer from a Plate of Appreciable Thermal Capacity with Heat Generation of q to Turbulent Flow ........28 0 Example 2.4: Unsteady Heat Transfer between a Fluid with Time-Varying Temperature and a Plate ....................................................31 Example 2.5: Heat Transfer between Two Fluids Separated by a Thin Plate ..............................................................................................34 Example 2.6: A Thermally Thin Plate with Heat Sources in a Compressible Fluid ..............................................................................36 Example 2.7: Temperature of a Radiating Thin Plate Placed in Supersonic Gas Flow ...............................................................................39 Example 2.8: Temperature of a Thin Plate after an Oblique Shock................44 Example 2.9: Heat Transfer between a Thin Plate and an Incompressible Flow Past It ..................................................................46 Example 2.10: Heat Transfer between a Thin Radiating Wedge and an Incompressible Fluid Flow Past It ................................................47 Chapter 5 Example 5.1: Linear Temperature Head along the Plate ...............................123 Example 5.2: A Plate Heated from One End (Qualitative Analysis) ............124 Example 5.3: Power Law Temperature Head along the Plate ......................124 Example 5.4: Sinusoidal Temperature Head Variation along the Plate .......125 Example 5.5: Linear Temperature Head near Stagnation Point ...................126 Example 5.6: Transverse Flow Past Nonisothermal Cylinder — Linear Temperature Head .....................................................................................127 Example 5.7: Transverse Flow Past Nonisothermal Cylinder with q = Constant ......................................................................................129 w xi © 2010 by Taylor & Francis Group, LLC 8237X_C000.indd 11 7/24/09 6:33:44 PM xii List of Examples Example 5.8: A Jump of Heat Flux on a Transversally Streamlined Cylinder .......................................................................................................130 Example 5.9: Transverse Flow Past Nonisothermal Cylinder — Effect of Dissipation ..............................................................................................131 Example 5.10: Comparison between the Effects of Nonisothermicity in Turbulent and Laminar Flows — Linear Temperature Head .........132 Example 5.11: Different Temperature Head and Heat Flux Variations for Turbulent Flow — Comparison with Experimental Data ..............133 Example 5.12: Stepwise Temperature Head — Comparison with Experimental Data .....................................................................................136 Example 5.13: Heat Transfer Inversion in Unsteady Flow — Linear Temperature Head .....................................................................................144 Example 5.14: Heat Flux Inversion in Gradientless Flow for a Parabolic and Some Other Temperature Heads .................................146 Example 5.15: Distributing Heat Sources for Optimal Temperature ...........150 Example 5.16: Mode of Change of Temperature Head ..................................153 Example 5.17: Heat Flux Pattern .......................................................................156 Chapter 6 Example 6.1: Heat Transfer from Fluid to Fluid in a Flow Past Two Sides of a Plate ............................................................................................163 Example 6.2: Heat Transfer from Thermally Thin Plate Heated from One End .............................................................................................164 Example 6.3: Heat Transfer from Elliptic Cylinder with Semiaxis Ratio a/b=4 and Uniformly Distributed Source of Power q ...............165 v Example 6.4: A Continuous Plate (Strip) of Polymer at Temperature T Extruded from a Die and Passed at Velocity U 0 w through a Bath with Water (Pr=6.1) at Temperature T ........................165 ∞ Example 6.5: Heat Transfer from Liquid to Liquid in a Flow Past a Thin Plate .................................................................................................167 Example 6.6: Heat Transfer between Two Fluids Separated by a Plate — An Exact Solution ........................................................................170 Example 6.7: Heat Transfer between an Elliptical Cylinder and Flowing Laminar Flow ..............................................................................175 Example 6.8: A Plate Heated from One End in a Symmetrical Flow ...........187 Example 6.9: A Plate Streamlined on One Side and Is Isolated from Another and a Plate in a Flow Past Two Sides .............................189 Example 6.10: A Plate with Inner Heat Sources ..............................................191 Example 6.11: A Plate in a High-Speed Compressible Flow .........................192 Example 6.12: A Plate in the Flow with a Pressure Gradient........................194 Example 6.13: A High Heated Radiating Plate ...............................................194 Example 6.14: Two Countercurrent Flowing Fluids Separated by a Thin Wall .............................................................................................196 © 2010 by Taylor & Francis Group, LLC 8237X_C000.indd 12 7/24/09 6:33:45 PM List of Examples xiii Example 6.15: A Parallel Plate Duct with Isolated Outer Surfaces and a Periodically Varying Inlet Temperature of Laminar Flow .........................................................................................206 Example 6.16: Alternative Quasi-Steady Approach .......................................208 Example 6.17: A Parallel Plate Duct with an Outer Wall Subjected to Convection with Environment and Turbulent Flows with a Periodically Varying Inlet Temperature .....................................209 Example 6.18: Heat Transfer between a Flush-Mounted Source on an Infinite Slab and an Incompressible Fluid Flow .........................211 Example 6.19: Heat Transfer between Two Fluids Separated by a Thin Wall Flowing Concurrently or Countercurrently in the Double Pipe — Conjugate Graetz Problem............................................213 Example 6.20: Temperature Field in the Entrance of a Plane Duct with a Fully Developed Velocity Profile .................................................215 Example 6.21: The Pipe with Hydrodynamically and Thermally Fully Developed Flow and a Thick Wall with Sufficient Heat Conduction and Capacity .........................................................................217 Example 6.22: Heat Transfer between Two Laminar or Turbulent Concurrent or Countercurrent Flows Separated by a Thin Plate ............................................................................................220 Example 6.23: Two Quiescent Fluids Separated by a Vertical Thin Plate ......221 Example 6.24: Heat Transfer between Two Fluids Separated by a Vertical Thin Plate Local Similarity Approach ..............................222 Example 6.25: A Radiating Plate with an Internal Source and an Insulated Bottom in Laminar or Turbulent Flows ...................223 Example 6.26: Heat Transfer from a Small Heated Strip of Length 2a Embedded in an Infinite Plate Streamlined by an Incompressible Laminar Flow .......................................................224 Example 6.27: Heat Transfer between a Translating Liquid Drop and Another Immiscible Liquid of Infinite Extent under the Influence of an Electric Field at a Low Peclet Number ..................226 Chapter 7 Example 7.1: One-Dimensional Conduction Problem for a Plane Wall ......236 Example 7.2: A Horizontal Channel Heated from below by q = Constant Fully Developed Laminar Flow .................................252 w Example 7.3: A Pipe with a Fully Developed Laminar Flow Heated Symmetrically at the Outer Surface by Uniform Heat Flux ................254 Example 7.4: A Thick-Walled Parallel-Plate Channel with Poiseuille-Couette Incompressible Laminar Flow and a Moving Upper Wall ................................................................................255 Example 7.5: The Thick-Walled Pipe of an Arbitrary Shape of Cross-Section with Fully Developed Velocity ...................................257 © 2010 by Taylor & Francis Group, LLC 8237X_C000.indd 13 7/24/09 6:33:45 PM

Description:
Abram S. Dorfman Conjugate Problems in Convective Heat Transfer CRC Press is an imprint of the Taylor & Francis Group, an informa business Boca Raton London New York
See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.