CONFIGURATION OF MULTIPLE INPUT MULTIPLE OUTPUT ANTENNA ARRAYS FOR WIRELESS COMMUNICATIONS IN UNDERGROUND MINES by Arghavan Emami Forooshani B.Sc., Iran University of Science and Technology, 2000 M.Sc., University of Manitoba, 2006 A THESIS SUBMITTED IN PARTIAL FULLFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF DOCTOR OF PHILOSOPHY in The Faculty of Graduate and Postdoctral Studies (Electrical and Computer Engineering) THE UNIVERSITY OF BRITISH COLUMBIA (Vancouver) August 2013 © Arghavan Emami Forooshani, 2013 ABSTRACT In recent years, the underground mining community has begun to embrace standards-based short-range wireless communications technology as a key part of their strategy for enhancing the safety and productivity of their operations. Here, we show how the significant differences between wireless propagation in conventional surface environments and underground mines affect the design of modern wireless communications systems based upon multiple-input multiple-output (MIMO) antenna array technology. In order to achieve this goal, we have employed a variety of approaches to characterize wireless propagation (and MIMO-based wireless system performance) in underground environments representative of those found in modern hard rock mines, including: 1)field measurements collected using a custom-designed channel sounder in both a building service tunnel at the University of British Columbia and an underground lead-zinc mine at Myra Falls, BC, 2) simulations based upon ray-tracing in representative environments and 3) theoretical models based upon waveguide mode expansion in representative environments. We have used the results obtained: 1) to determine the reduction in the angular spread of multipath signals that arrive at the receiver in an underground mine compared to that observed in conventional surface environments and the manner in which it decreases with increasing transmitter-receiver separation and 2) to show that the antenna elements in MIMO antenna arrays used in underground environments must therefore be separated by several wavelengths (rather than the customary half-wavelength used in surface environments) in order to achieve acceptable performance. Further, the separation between the antennas must increase as the transmitter-receiver separation increases, higher order modes attenuate and, as a consequence, angular spread decreases. Other outcomes of this work include: 1)demonstration that the power azimuth spectrum (PAS) in underground mine environments can be modeled by a Gaussian distribution and 2)development of a novel technique based upon particle swarm optimization (PSO) for assessing and optimizing the performance of distributed-MIMO antenna systems in underground mineenvironments. ii PREFACE This thesis presents research conducted by Arghavan Emami-Forooshani under the supervision of Prof. David G. Michelson in the Radio Science Lab (RSL) at the University of British Columbia, Vancouver campus. Prof. Sima Noghanian (University of North Dakota) provided valuable technical suggestions and feedback during various stages of the thesis project. A version of Chapter 2, “A survey on wireless propagation modeling in underground mines” has been accepted for publication in IEEE Communications Surveys and Tutorials [manuscript ID: COMST-00130-2012-R1]. Prof. Sima Noghanian read an early draft and provided valuable technical feedback. Shahzad Bashir suggested some revisions to the Introduction and Conclusions. During the development of the MIMO channel sounder in Chapter 3, Robert D. White assisted with development of the data acquisition code. A poster based on Chapter 4, “Effect of antenna configuration on performance of MIMO-based access points in a service tunnel” was presented at IEEE APS/USNC-URSI 2012(Chicago, IL), in Jul. 2012 and an abstract was published in the conferenceproceedings. A version of Chapter 5, “Effect of antenna array properties on MIMO system performance in an underground mine,” has been accepted for publication in IET Microwave, Antennas and Propagation [manuscript ID: MAP-2013-0102.R1]. Robert D. White participated in the MIMO measurement campaign in the underground mine. iii For Chapter 6, Prof. Sima Noghanian provided valuable technical feedback throughout the project. iv TABLE OF CONTENTS Abstract.....................................................................................................................................ii Preface.....................................................................................................................................iii Table of Contents....................................................................................................................iii List of Tables.........................................................................................................................viii List of Figures.........................................................................................................................ix Abbreviations..........................................................................................................................xii Acknowledgements..................................................................................................................xv Dedication.............................................................................................................................xvii CHAPTER 1:INTRODUCTION AND OVERVIEW............................................................1 1.1 Wireless in Underground Mines........................................................................................2 1.2 Characterization of MIMO-Based Systems......................................................................5 1.3 Previous Efforts to Design Antenna Configuration in Indoor Environments...............8 1.4 Implications for MIMO Antenna Configuration Design and Deployment in UndergroundMines.......................................................................................................................11 1.5 Objectives of This Work...................................................................................................12 1.6 Organization of the Thesis...............................................................................................12 CHAPTER 2:A SURVEY OF WIRELESS COMMUNICATIONS AND PROPAGATION MODELING IN UNDERGROUND MINES.......................................................................14 2.1 Introduction.......................................................................................................................14 2.2 Wireless Propagation Terminology.................................................................................17 2.3 The Evolution of Wireless Communications in Tunnels and Underground Mines....22 2.4 Propagation Analysis and Modeling...............................................................................29 v 2.5 Measurement-Based Modeling........................................................................................49 2.6 Implications for Wireless Communication System Design...........................................60 2.7 Conclusions........................................................................................................................71 CHAPTER 3:MIMO EXPERIMENTAL SETUP AND DATA COLLECTION...............74 3.1 Introduction.......................................................................................................................74 3.2 Development of a MIMO Channel Sounder...................................................................74 CHAPTER 4:EFFECT OF ANTENNA CONFIGURATION ON MIMO-BASED ACCESS POINTS IN A SHORT TUNNEL.........................................................................81 4.1 Introduction.......................................................................................................................81 4.2 Simulation Setup and Scenarios......................................................................................84 4.3 Multiple Antenna Analysis...............................................................................................89 4.4 Simulation Results and Discussions.................................................................................91 4.5 Experimental Validation................................................................................................102 4.6 Conclusions......................................................................................................................105 CHAPTER 5:EFFECT OF ARRAY PROPERTIES ON MIMO SYSTEM PERFORMANCE IN AN UNDERGROUND MINE........................................................107 5.1 Introduction.....................................................................................................................107 5.2 MIMO Measurement in an Underground Mine..........................................................110 5.3 Multiple Antenna Analysis.............................................................................................115 5.4 Measurement Results and Discussions..........................................................................118 5.5 Conclusions......................................................................................................................129 CHAPTER 6:CHARACTERIZATION OF ANGULAR SPREAD IN UNDERGROUND TUNNELS BASED ON A MULTIMODE WAVEGUIDE MODEL.................................131 6.1 Introduction.....................................................................................................................131 6.2 A Multimode Waveguide Model....................................................................................133 vi 6.3 Angular Spreadand Capacity Characterization Based on a Multimode Waveguide Model ...........................................................................................................................................135 6.4 Results and Validation of Multimode Modeling..........................................................138 6.5 Extension of the IEEE 802.11n MIMO Channel Model to Underground Mines......153 6.6 Conclusions......................................................................................................................154 CHAPTER 7:OPTIMIZATION OF ANTENNA PLACEMENT IN DISTRIBUTED MIMO SYSTEMS FOR UNDERGROUND MINES.........................................................156 7.1 Introduction.....................................................................................................................156 7.2 Multimode Waveguide Modeling and Experimental Validation................................159 7.3 Optimization of C-MIMO and D-MIMO Configurations...........................................162 7.4 Comparison of C-MIMO and D-MIMO System Performance...................................168 7.5 Conclusions......................................................................................................................178 CHAPTER 8:CONCLUSIONS..........................................................................................181 8.1 Contributions...................................................................................................................181 8.2 Recommendations for Future Work.............................................................................183 REFERENCES....................................................................................................................185 vii LIST OF TABLES TABLE2-1 OVERALL LOSS ALONG A STRAIGHT PATH(E MODE WITH HALF-WAVE ANTENNAS)[11]..................38 H TABLE2-2 OVERALL LOSS ALONG APATH INCLUDING ONE CORNER(E MODE WITH HALF-WAVE ANTENNAS) H [11]. ...........................................................................................................................................................38 TABLE2-3 COMPARISONOF DIFFERENT ANALYTICAL MODELS............................................................................48 TABLE2-4 SOME SIMILARITIES ANDDIFFERENCES BETWEENUNDERGROUND MINES,STRAIGHT LONG TUNNELS AND CONVENTIONAL INDOOR FOR PROPAGATIONATUHF-BAND(F:FREQUENCY,N:PATHLOSS EXPONENT, ΤRMS:RMSDELAY SPREAD,DTX-RX:TX ANDRX DISTANCE,↑:INCREASE,↓:DECREASE)................................52 TABLE2-5 PATHLOSS EXPONENT ANDDELAY SPREAD ASSUMING OMNI-DIRECTIONAL ANTENNASFOR SEVERAL FREQUENCIES IN DIFFERENT ENVIRONMENTS...............................................................................................55 TABLE2-6 KEY IMPLICATIONS FORWIRELESS SYSTEM DESIGN ATUHF-BAND IN UNDERGROUNDMINES...........71 TABLE3-1 MEASUREMENT SPECIFICATIONS........................................................................................................76 TABLE4-1 SPECIFICATIONS OF THEMAIN STRUCTURES USEDINTHEWIRELESSINSITE SIMULATIONS................86 TABLE4-2 DIFFERENT ANTENNA CONFIGURATION AND DEPLOYMENT SCENARIOS(X:PARALLEL TO THE TUNNEL WIDTH,Y:PARALLEL TO THE TUNNEL HEIGHT,LONG:PARALLEL TO THE TUNNEL AXIS,H:HORIZONTAL POLARIZATION ANDV:VERTICAL POLARIZATION)......................................................................................88 TABLE4-3 CORRELATION COEFFICIENT OF NEIGHBORING ELEMENTS ATRX WITH DIFFERENT INTERELEMENT SEPARATIONS(V:VERTICAL,H:HORIZONTAL POLARIZATIONS)..................................................................93 TABLE4-4 AVERAGE PATHLOSS AT2.49GHZ...................................................................................................100 TABLE4-5 MEASUREMENT SPECIFICATIONS......................................................................................................102 TABLE4-6 CAPACITY STATISTICS AT2.49GHZ ANDSNR=20DBTO COMPAREMIMOCAPACITY OF DIFFERENT ANTENNA CONFIGURATIONS(WITH POWER-IMPACT).................................................................................103 TABLE5-1 MIMOMEASUREMENT SCENARIOS IN THEMYRAFALLS UNDERGROUND MINE...............................114 TABLE5-2 ENVELOPE CORRELATIONCOEFFICIENTS OFRX GRID ANTENNAS FORDIFFERENT MEASUREMENT SCENARIOS(F=2.49GHZ)..........................................................................................................................115 TABLE5-3 SINGULAR VALUES OF MEASUREDH-MATRICES AND I.I.D.RAYLEIGHH-MATRICES(ALL SINGULAR VALUES ARE NORMALIZED TO THE LARGEST ONE).....................................................................................121 TABLE5-4 MEAN PATHLOSS MEASURED AT EACHRX GRID LOCATION INMYRA-FALLS MINE(AT2.49GHZ)..128 TABLE6-1 ANGULAR SPREADS(DEG)FOR DIFFERENT ZONESOF THE LARGE AND SMALL TUNNEL OBTAINED BY MULTIMODE AND RAY-TRACING METHODS................................................................................................142 TABLE6-2 COMPARISON OFASFOR DIFFERENT ENVIRONMENTS.....................................................................146 TABLE6-3 MEDIAN AND10%OUTAGE4×4MIMOCAPACITY(BIT/SEC/HZ)ATSNR=20DBFOR SEVERAL INTERELEMENT SPACINGS AND DIFFERENT ZONES OF THE SMALL TUNNEL.................................................153 TABLE7-1 MULTIMODE ANDPSOSIMULATION SETUP......................................................................................169 viii LIST OF FIGURES FIGURE1-1 TECHNOLOGY PUSH INTOMINING UNDERGROUND MINES OVER TIME..............................................4 FIGURE1-2 DIFFERENT TYPES OFMIMOANTENNA CONFIGURATIONS,SUCH ASULAANDUCAFOR INDOOR ENVIRONMENTS...........................................................................................................................................10 FIGURE1-3 FIXEDTXULAPLACED ON THE PLATFORM,MOBILERXULAINSTALLED ON THE TRAIN WINDSHIELD[21].........................................................................................................................................11 FIGURE2-1 WIRELESS PROPAGATIONPHENOMENA..........................................................................................18 FIGURE2-2 LARGE-SCALE AND SMALL-SCALE FADINGS..................................................................................19 FIGURE2-3 APATHLOSS MODEL WITHTHREE BREAKPOINTS...........................................................................21 FIGURE2-4 THROUGH-THE-EARTH COMMUNICATIONS....................................................................................24 FIGURE2-5 LEAKY FEEDER CABLE...................................................................................................................26 FIGURE2-6 TRACKING SYSTEM IN ANUNDERGROUND MINE[52].....................................................................27 FIGURE2-7 SURFACE ANTENNA FOR THROUGH-THE-EARTH COMMUNICATIONS..............................................30 FIGURE2-8 A)CURRENT DISTRIBUTIONAND ELECTRIC FIELD LINES OF THE MONOFILAR MODE(BETWEEN EACH WIRE AND THE TUNNELWALL)AND B)MONOFILAR MODE AND BIFILAR MODE(BETWEEN THE WIRES)[30].32 FIGURE2-9 COMPARISON OF REFLECTION ANGLES OF LOWERAND HIGHER ORDER MODES IN A WAVEGUIDE..34 FIGURE2-10 MAP AND DIGITAL PHOTOGRAPH OF AN UNDERGROUND GALLERY[60]........................................35 FIGURE2-11 OVERALL LOSS FOR VARIOUS DISTANCES ALONGA STRAIGHT TUNNEL FOR HALF-WAVE ANTENNAS WITH HORIZONTAL POLARIZATIONS(ZISTX-RX DISTANCE)[11]................................................................37 FIGURE2-12 MEASURED DATA FOR TWOPOLARIZATIONS AT900MHZ TOGETHER WITH THETWO-SLOPE REGRESSION FITS IN ACOAL MINE[74]........................................................................................................41 FIGURE2-13 STOCHASTIC SCATTERINGAPPROACH:REFLECTION AT RANDOMLY ORIENTED TANGENTIAL PLANES FOR EACH DISCRETE RAY(A)SAME PLANE FOR ALL THE RAYS AND(B)RANDOMLY ORIENTED PLANES[87]... ......................................................................................................................................................47 FIGURE2-14 (A)ARECTANGULAR WAVEGUIDE AND(B)CIMMODEL FOR THE WAVEGUIDE INFIGURE(A)[88]... ......................................................................................................................................................47 FIGURE2-15 RADIUS OF A CURVATUREIN A RECTANGULAR CURVED TUNNEL[13]...........................................64 FIGURE3-1 BLOCK DIAGRAM OF THEMEASUREMENT SETUP............................................................................76 FIGURE3-2 MIMOMEASUREMENT EQUIPMENTINRSL..................................................................................77 FIGURE3-3 CONNECTION DIAGRAM FOR CALIBRATION....................................................................................79 FIGURE3-4 FLOWCHART OF THEUWB-MIMOCHANNEL SOUNDER SOFTWARE..............................................80 FIGURE4-1 UBCWOODWARD SERVICE TUNNEL CONSTRUCTED INWIRELESSINSITE WITH ITS EXTENSIVE INFRASTRUCTURE AND CONSIDERING3PROPAGATION SCENARIOS..............................................................85 ix FIGURE4-2 ANTENNA CONFIGURATIONSCENARIOS USED IN THIS STUDY(V:VERTICAL,H:HORIZONTAL).....89 FIGURE4-3 COMPARISON OF DIFFERENT ANTENNA CONFIGURATIONS FOR THE TUNNELWITHOUT INFRASTRUCTURE........................................................................................................................................96 FIGURE4-4 COMPARISON OF THE PERFORMANCE OF TR-X-VAND TR-Y-HANTENNA CONFIGURATIONS ATRX2. ......................................................................................................................................................96 FIGURE4-5 COMPARISON OF DIFFERENT ANTENNA CONFIGURATIONS FOR THE TUNNELWITH INFRASTRUCTURE........................................................................................................................................97 FIGURE4-6 IMPACT OF INFRASTRUCTURE ON PERFORMANCE OF TR-X-V-SC6ANTENNA CONFIGURATION......99 FIGURE4-7 COMPARISON OF SIMULATED(WITH INFRASTRUCTURE)AND MEASUREDMIMOCAPACITYCDFS... ....................................................................................................................................................104 FIGURE5-1 MAP OF THEMYRA-FALLS MINE INB.C.,CANADA AND THE TRANSMITTING(TX)ARRAY AND RECEIVER(RX)GRID LOCATIONS(5TX ARRAY LOCATIONS AND2RX GRID LOCATIONS)..........................111 FIGURE5-2 PHOTOGRAPHY OFRFEQUIPMENT INMYRAFALLS MINE...........................................................111 FIGURE5-3 SPATIAL CORRELATION ANALYSIS ON THE SUCCESSIVE ANTENNA ELEMENTS ON THERX GRID FOR TWO DIFFERENT ARRAYORIENTATIONS:(A)PERPENDICULAR TO THETUNNEL AXIS AND(B)PARALLEL TO THE TUNNEL AXIS......................................................................................................................................114 FIGURE5-4 CDFS OF4×4-MIMOCAPACITY WITHOUT POWER CONSIDERATIONS(BASED ON THE MEASUREMENT).........................................................................................................................................119 FIGURE5-5 ANGULAR SPREAD VARIATION VERSUS DISTANCE(BASED ON MULTIMODE WAVEGUIDE MODEL)..... ....................................................................................................................................................122 FIGURE5-6 CAPACITY OF4×4-MIMOSYSTEM FOR DIFFERENTANTENNA SPACINGS(BASED ON THE MULTIMODE WAVEGUIDEMODEL).............................................................................................................123 FIGURE5-7 CDFS OF4×4-MIMOCAPACITY WITH POWERCONSIDERATIONS(BASED ON THE MEASUREMENT)... ....................................................................................................................................................124 FIGURE5-8 ATUNNEL WITH RECTANGULAR CROSS-SECTION.........................................................................126 FIGURE5-9 CDFS OF4×4-MIMOCAPACITY WITH POWERCONSIDERATIONS(BASED ON MEASUREMENTAND MULTIMODE WAVEGUIDEMODEL ATF=2.49GHZ,SNR=20DB)..............................................................129 FIGURE6-1 COMPARISON OF MULTIMODE MODEL WITH EXPERIMENTAL WORK OBTAINEDFROM[13]...........135 FIGURE6-2 REFLECTION ANGLES OFLOWER AND HIGHER ORDER MODES FROM SIDEWALLS IN A WAVEGUIDE (Φ1IS THE ANGLE FOR THELOWER ORDER ANDΦ2IS FOR THE HIGHER ORDER MODE)................................136 FIGURE6-3 THE CROSS-SECTION OF THE SUBWAY TUNNEL AND ITS EQUIVALENT RECTANGLE.....................139 FIGURE6-4 ZERO-MEANGAUSSIAN FIT OF THEPASFOR THE SMALL TUNNEL(MULTIMODE WAVEGUIDE MODEL). ....................................................................................................................................................140 FIGURE6-5 ZERO-MEANGAUSSIAN FIT OF THEPASFOR DIFFERENT ZONESOF TWO TUNNEL SIZES (MULTIMODE WAVEGUIDEMODEL)............................................................................................................141 FIGURE6-6 COMPARISON OFPASOBTAINED BY MULTIMODE AND RAY-TRACING FOR THE SMALL TUNNEL (WHOLE TUNNEL).......................................................................................................................................142 x
Description: