ebook img

Concrete Abstract Algebra PDF

255 Pages·2016·1.63 MB·Romanian
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Concrete Abstract Algebra

CONCRETE ABSTRACT ALGEBRA FromNumberstoGro¨bnerBases ConcreteAbstractAlgebradevelopsthetheoryofabstractalgebrafromnum- bers to Gro¨bner bases, whilst taking in all the usual material of a traditional introductorycourse.Inadditionthereisarichsupplyoftopicssuchascryptog- raphy,factoringalgorithmsforintegers,quadraticresidues,finitefields,factor- ingalgorithmsforpolynomialsandsystemsofnon-linearequations.Aspecial feature is that Gro¨bner bases do not appear as an isolated example. They are fullyintegratedasasubjectthatcanbetaughtsuccessfullyinanundergraduate context. Lauritzen’sapproachtoteachingabstractalgebraisbasedonanextensiveuse ofexamples,applicationsandexercises.Thebasicphilosophyisthatinspiring, non-trivial, applications and examples give motivation and ease the learning of abstract concepts. This book is built on several years of experience teach- ing introductory abstract algebra at Aarhus, where the emphasis on concrete exampleshasimprovedstudentperformancesignificantly. CONCRETE ABSTRACT ALGEBRA From Numbers to Gro¨bner Bases NIELS LAURITZEN DepartmentofMathematicalSciences UniversityofAarhus Denmark CAMBRIDGE UNIVERSITY PRESS Cambridge,New York, Melbourne, Madrid, Cape Town, Singapore, Sa~o Paulo, Delhi CambridgeUniversityPress TheEdinburghBuilding,CambridgeCB28RU,UK Published in the United States of America by Cambridge University Press, New York www.cambridge.org Information on this title: www.cambridge.org/9780521826792 (cid:1)C CambridgeUniversityPress2003 Thispublicationisincopyright.Subjecttostatutoryexception andtotheprovisionsofrelevantcollectivelicensingagreements, noreproductionofanypartmaytakeplacewithout thewrittenpermissionofCambridgeUniversityPress. Firstpublished2003 Fifth printing 2009 PrintedintheUnitedKingdomattheUniversityPress,Cambridge AcataloguerecordforthisbookisavailablefromtheBritishLibrary LibraryofCongressCataloguinginPublicationdata Lauritzen,Niels,1964– Concreteabstractalgebra:fromnumberstoGro¨bnerbases/NielsLauritzen. p. cm. Includesbibliographicalreferencesandindex. ISBN0521826799(hardback)–ISBN0521534100(paperback) 1.Algebra,abstract. 1.Title QA162.L432003 512(cid:2).02–dc21 2003051248 ISBN 978-0-521-82679-9 hardback ISBN 978-0-521-53410-9 paperback CambridgeUniversityPresshasnoresponsibilityforthepersistenceoraccuracy of URLs for external or third-partyinternetwebsitesreferredtointhispublication, and does not guarantee that any content on suchwebsitesis,orwillremain, accurateorappropriate. Information regarding prices, travel timetables and other factual information given in this work are correct at the time of first printing but Cambridge Universtiy Press does not guarantee the accuracy of such information thereafter. ForHelleandWilliam Contents Preface pagexi Acknowledgements xiv 1 Numbers 1 1.1 Thenaturalnumbersandtheintegers 3 1.1.1 Wellorderingandmathematicalinduction 3 1.2 Divisionwithremainder 4 1.3 Congruences 5 1.3.1 Repeatedsquaring–anexample 7 1.4 Greatestcommondivisor 8 1.5 TheEuclideanalgorithm 9 1.6 TheChineseremaindertheorem 14 1.7 Euler’stheorem 17 1.8 Primenumbers 19 1.8.1 Thereareinfinitelymanyprimenumbers 20 1.8.2 Uniquefactorization 22 1.8.3 Howtocomputeϕ(n) 24 1.9 RSAexplained 24 1.9.1 Encryptionanddecryptionexponents 25 1.9.2 Findingastronomicalprimenumbers 26 1.10 Algorithmsforprimefactorization 30 1.10.1 Thebirthdayproblem 30 1.10.2 Pollard’sρ-algorithm 31 1.10.3 Pollard’s(p−1)-algorithm 33 1.10.4 TheFermat–Kraitchikalgorithm 34 1.11 Quadraticresidues 36 1.12 Exercises 41 vii viii Contents 2 Groups 50 2.1 Definition 50 2.1.1 Groupsandcongruences 51 2.1.2 Thecompositiontable 53 2.1.3 Associativity 54 2.1.4 Thefirstnon-abeliangroup 54 2.1.5 Uniquenessofneutralandinverseelements 55 2.1.6 Multiplicationbyg ∈ G isbijective 56 2.1.7 Moreexamplesofgroups 57 2.2 Subgroupsandcosets 60 2.2.1 SubgroupsofZ 61 2.2.2 Cosets 61 2.3 Normalsubgroups 64 2.3.1 Quotientgroupsoftheintegers 66 2.3.2 Themultiplicativegroupofprimeresidueclasses 66 2.4 Grouphomomorphisms 68 2.5 Theisomorphismtheorem 71 2.6 Orderofagroupelement 72 2.7 Cyclicgroups 74 2.8 Groupsandnumbers 76 2.8.1 Euler’stheorem 76 2.8.2 Productgroups 76 2.8.3 TheChineseremaindertheorem 77 2.9 Symmetricandalternatinggroups 78 2.9.1 Cycles 79 2.9.2 Simpletranspositionsand“bubble”sort 82 2.9.3 Thealternatinggroup 85 2.9.4 Simplegroups 86 2.9.5 The15-puzzle 88 2.10 Actionsofgroups 92 2.10.1 Conjugacyclasses 98 2.10.2 Conjugacyclassesinthesymmetricgroup 98 2.10.3 Groupsoforder pr 100 2.10.4 TheSylowtheorems 101 2.11 Exercises 104 3 Rings 111 3.1 Definition 112 3.1.1 Ideals 115 3.2 Quotientrings 116 3.2.1 QuotientringsofZ 117 Contents ix 3.2.2 Primeideals 118 3.2.3 Maximalideals 118 3.3 Ringhomomorphisms 119 3.3.1 TheuniqueringhomomorphismfromZ 120 3.3.2 Freshman’sDream 121 3.4 Fieldsoffractions 123 3.5 Uniquefactorization 125 3.5.1 Divisibilityandgreatestcommondivisor 126 3.5.2 Irreducibleelements 126 3.5.3 Primeelements 127 3.5.4 Euclideandomains 130 3.5.5 Fermat’stwo-squaretheorem 132 3.5.6 TheEuclideanalgorithmstrikesagain 134 3.5.7 Primenumberscongruentto1modulo4 135 3.5.8 Fermat’slasttheorem 137 3.6 Exercises 138 4 Polynomials 143 4.1 Polynomialrings 144 4.1.1 Binomialcoefficientsmoduloaprimenumber 146 4.2 Divisionofpolynomials 147 4.3 Rootsofpolynomials 150 4.3.1 Differentiationofpolynomials 153 4.4 Cyclotomicpolynomials 154 4.5 Primitiveroots 157 4.5.1 Decimalexpansionsandprimitiveroots 159 4.5.2 Primitiverootsandpublickeycryptography 160 4.5.3 Yetanotherapplicationofcyclotomic polynomials 160 4.6 Idealsinpolynomialrings 161 4.6.1 Polynomialringsmoduloideals 164 4.7 TheoremaAureum:thelawofquadraticreciprocity 167 4.8 Finitefields 170 4.8.1 Existenceoffinitefields 172 4.8.2 Uniquenessoffinitefields 172 4.8.3 Abeautifulidentity 173 4.9 Berlekamp’salgorithm 176 4.10 Exercises 179 5 Gro¨bnerbases 186 5.1 Polynomialsinseveralvariables 187 5.1.1 Termorderings 189

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.