ebook img

Conceptual Basis of Quantum Mechanics PDF

349 Pages·2015·3.744 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Conceptual Basis of Quantum Mechanics

Undergraduate Lecture Notes in Physics Jan-Markus Schwindt Conceptual Basis of Quantum Mechanics Undergraduate Lecture Notes in Physics Undergraduate Lecture Notes in Physics (ULNP) publishes authoritative texts covering topicsthroughoutpureandappliedphysics.Eachtitleintheseriesissuitableasabasisfor undergraduateinstruction,typicallycontainingpracticeproblems,workedexamples,chapter summaries, andsuggestions for further reading. ULNP titles mustprovide at least oneof thefollowing: (cid:129) Anexceptionally clear andconcise treatment ofastandard undergraduate subject. (cid:129) Asolidundergraduate-levelintroductiontoagraduate,advanced,ornon-standardsubject. (cid:129) Anovel perspective oranunusual approach toteaching asubject. ULNPespeciallyencouragesnew,original,andidiosyncraticapproachestophysicsteaching at theundergraduate level. ThepurposeofULNPistoprovideintriguing,absorbingbooksthatwillcontinuetobethe reader’spreferred reference throughout theiracademic career. Series editors Neil Ashby ProfessorEmeritus, University of Colorado, Boulder, CO,USA William Brantley Professor, FurmanUniversity, Greenville, SC,USA MatthewDeady Professor, BardCollege Physics Program, Annandale-on-Hudson,NY, USA Michael Fowler Professor, University of Virginia, Charlottesville, VA, USA Morten Hjorth-Jensen Professor, University of Oslo, Oslo,Norway Michael Inglis Professor, SUNY Suffolk CountyCommunity College, LongIsland, NY,USA Heinz Klose ProfessorEmeritus, Humboldt University Berlin, Berlin, Germany HelmySherif Professor, University of Alberta, Edmonton, AB,Canada More information about this series at http://www.springer.com/series/8917 Jan-Markus Schwindt Conceptual Basis of Quantum Mechanics 123 Jan-Markus Schwindt Dossenheim Germany ISSN 2192-4791 ISSN 2192-4805 (electronic) Undergraduate Lecture Notesin Physics ISBN978-3-319-24524-9 ISBN978-3-319-24526-3 (eBook) DOI 10.1007/978-3-319-24526-3 LibraryofCongressControlNumber:2015951765 SpringerChamHeidelbergNewYorkDordrechtLondon ©SpringerInternationalPublishingSwitzerland2016 Thisworkissubjecttocopyright.AllrightsarereservedbythePublisher,whetherthewholeorpart of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical way, and transmission orinformationstorageandretrieval,electronicadaptation,computersoftware,orbysimilarordissimilar methodologynowknownorhereafterdeveloped. The use of general descriptive names, registered names, trademarks, service marks, etc. in this publicationdoesnotimply,evenintheabsenceofaspecificstatement,thatsuchnamesareexemptfrom therelevantprotectivelawsandregulationsandthereforefreeforgeneraluse. The publisher, the authors and the editors are safe to assume that the advice and information in this book are believed to be true and accurate at the date of publication. Neither the publisher nor the authorsortheeditorsgiveawarranty,expressorimplied,withrespecttothematerialcontainedhereinor foranyerrorsoromissionsthatmayhavebeenmade. Printedonacid-freepaper SpringerInternationalPublishingAGSwitzerlandispartofSpringerScience+BusinessMedia (www.springer.com) Preface Quantum mechanics (QM) is still quite a mysterious theory. In contrast to the theory of relativity, for example, it did not evolve out of some basic idea, some physical principle. Only reluctantly, physicists had to accept its claims which are completely counterintuitive. Many aspects regarding its interpretation are still a matter of debate nowadays. I tried to write a textbook I would have liked to read as a student; a book that avoids many misunderstandings, unclear and vague ideas, and the questions that havesettledinmymindforquiteawhile,atthattime;orconfirmsthatsomeofmy questionsbelongtotheissuesofinterpretationwhichareconsideredunclearbythe entirephysicscommunityandareunderheavydebate.Theresultingbookdiffersin some points from most of the other QM textbooks. First, the mysterious properties of the theory are emphasized and discussed in detail. For that reason, it starts with Bell’s inequalities as a foretaste of what we embark on. Other QM books often treat QM as something that became common-place and self-evident, just as a part of the physics canon. But this is not the case. The conceptual basis of QM has been under steady research and fiery debatesthroughoutallthedecadesfrom1900untiltoday(incontrasttospecialand generalrelativitywhosefoundationshavebeenunderstoodfor90years),withnew andsurprisinginsightscomingupagainandagain.Bynow,thereisawholebunch of interpretations of the theory which fundamentally differ in their world view. A separate chapter is dedicated to these interpretations. Second,thebookdevelopsitsmatterfromthegeneraltothespecific.Atfirst,the general postulatesofQM arepresentedanddiscussed indetail. The wave function as a special case of a quantum state follows later. This has the advantage that the main hurdle is taken right in the beginning, and a double run-up is avoided. For many books develop the matter twice: first by means of Schrödinger’s wave mechanics and later again under the title of “abstract formulation.” From my point of view, it is better to begin with the abstract part and thereby avoid the misunderstanding that QM is only a theory of wave functions. v vi Preface Third,thegeneralpostulatesandbasicnotionsareallexplainedbymeansofthe simplestnontrivialquantumsystem:thetwo-dimensionalstatespaceoftheelectron spin, also called qubit. Also for wave functions we stick to our principle of the simplest example. Insteadoffollowingmostbookswhichdirectlyjumpfromonetothreedimensions, wetakeastopoverintwodimensions.Forthereitiseasiertoexplaintheseparation of variables and in particular some features of a rotation symmetric potential (namely without spherical harmonics). Fourth,thereisastrongfocusontheclarityofnotionsandunderstandingofthe mathematical background. This clarity helps to avoid misunderstandings from the beginning. Forexample,alargepartofQMtakesplaceintheinfinite-dimensionalspaceof wave functions. Many theorems known from linear algebra for finite-dimensional vector spaces are no longer valid there. These peculiarities are discussed in detail. Tensorproductsalsogetenoughspace,sincetheyplayanenormouslyimportant role in QM, e.g., for the notion of an entangled state, and for the combination of wave function and spin state. Fifth,theexercisesarenotgatheredattheendofeachchapter,butareembedded in the main text. This is supposed to encourage the reader to think about and to recalculatethingsduringhisread.Thesolutionstotheexercisesaregatheredatthe end of the book. The focus of this book is on the general postulates of QM, its interpretation, its basic notions, and its mathematical formulation. The first and most extensive part of the book is dedicated to this topic. In the second part, an important special case is treated: the QM of wave func- tions in one, two, and three spatial dimensions, under the assumption that the Hamiltonian operator consists only of a kinetic term and a time-independent potential. Here, the most important examples are the harmonic oscillator and the hydrogen atom. Scattering theory is also discussed within this context. Thethirdpartencompassesfurthertopicswhichbelongtothecanonicalmaterial of a lecture on QM: combination of spin and angular momentum, QM with elec- tromagnetism,perturbation theory,andsystemswithmany particles.Hereweonly develop the basic ideas and methods, as well as some simple examples. For applications like the fine and hyperfine structure of hydrogen, or the theory of atomic transitions, we refer the reader to the literature. Finally, we provide a short explanationofthenotionofapathintegralanddiscusstherelativistictheoryofthe electron (Dirac equation). The target audience of this book is, of course, in the first place students of physicswhostudyQMinthecontextofacourseontheoreticalphysics.Butdueto the axiomatic, deductive approach and the detailed discussion of the mathematical background,it isalso verywell suitedformathematicianswhowant tounderstand QM. In some places we explicitly try to overcome the “cultural barrier” between mathematicians and physicists. Preface vii Some topics which are exciting but not mandatory for the further reading (and for exams) are placed in a dedicated text environment—the so-called “nerd’s cor- ner”—for curious readers. Acknowledgments Thisbookdidnotresultfrommyworkalone.Iwanttoexpressmygratitudetothe people who have enabled, supported, and contributed to this project: (cid:129) VeraSpillneratSpringerfortheopportunitytowritethisbook;fortheinspiring discussions;forthesupplywithreadingmaterial;andforproofreading,acrucial contribution to the quality of this book; (cid:129) Bianca Alton at Springer for the organizational supervision of the project; she has helped me with many questions and formalities; (cid:129) ClausAscheronatSpringerfortheopportunitytotranslateandpublishthisbook also in English; (cid:129) Kristin Riebe for the creation of two images, once again shining light on her graphical talent; (cid:129) Bernhard Brosda for the nice idea with the cartoons; (cid:129) Anja Stemme and Jörg Kügler for reading material about Bell’s inequalities; (cid:129) Andreas Rüdinger for mentioning the Gelfand triple; (cid:129) Michael Doran for pointing me to Shankar; (cid:129) My mother for her moral support. ThefactthatIamabletowritesuchabookIowetothemanyteachers,friends, andsourcesofinspirationonmyway.AtthispointIwanttomentiontwoofthem explicitly: I thank (cid:129) MymathteacherHanspeterEichhorn,whoalongtimeagonurturedmyinterest in mathematics and gave it, so to speak, legs to walk. (cid:129) My Ph.D. supervisor Prof. Christof Wetterich for inspiration and support over many years. Frankfurt, June 2013 Jan-Markus Schwindt Heidelberg, July 2015 Contents Part I Formalism and Interpretation 1 Introduction: Nonlocal or Unreal?. . . . . . . . . . . . . . . . . . . . . . . . 3 2 Formalism I: Finite-Dimensional Hilbert Spaces. . . . . . . . . . . . . . 9 2.1 The Postulates of Quantum Mechanics—Overview . . . . . . . . . 9 2.2 States in Hilbert Space. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 2.3 Linear Hermitian Operators . . . . . . . . . . . . . . . . . . . . . . . . . 19 2.4 Eigenvalues and Eigenvectors. . . . . . . . . . . . . . . . . . . . . . . . 23 2.5 Projection and Measurement. . . . . . . . . . . . . . . . . . . . . . . . . 26 2.6 Unitary Operators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 2.7 Time Evolution and Schrödinger Equation. . . . . . . . . . . . . . . 40 2.8 Commutator and Uncertainty . . . . . . . . . . . . . . . . . . . . . . . . 47 2.9 Schrödinger Picture and Heisenberg Picture . . . . . . . . . . . . . . 54 2.10 Tensor Products . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59 3 Formalism II: Infinite-Dimensional Hilbert Spaces. . . . . . . . . . . . 71 3.1 Sets of Functions as Vector Spaces. . . . . . . . . . . . . . . . . . . . 72 3.2 Scalar Product and Orthonormal Basis. . . . . . . . . . . . . . . . . . 75 3.3 Pseudo-Vectors and Fourier Transformation. . . . . . . . . . . . . . 89 3.4 Position and Momentum Operator, Correspondence Principle. . . . . . . . . . . . . . . . . . . . . . . . . . . 100 3.5 Matter Waves and Wave-Particle Duality. . . . . . . . . . . . . . . . 103 3.6 Schrödinger Equation in One-Dimensional Position Space . . . . 109 3.7 Several Space Dimensions . . . . . . . . . . . . . . . . . . . . . . . . . . 113 3.8 Several Particles. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120 4 Interpretations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127 4.1 The Problem of Interpreting QM. . . . . . . . . . . . . . . . . . . . . . 127 4.2 Many Worlds Interpretation . . . . . . . . . . . . . . . . . . . . . . . . . 130 4.3 Copenhagen Interpretation . . . . . . . . . . . . . . . . . . . . . . . . . . 137 4.4 De Broglie–Bohm Theory . . . . . . . . . . . . . . . . . . . . . . . . . . 139 4.5 Collapse Models. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141 ix x Contents 4.6 New Age Interpretation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143 4.7 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143 References. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145 Part II A Single Scalar Particle in an External Potential 5 One-Dimensional Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 149 5.1 Dissolving of a Gaussian Wave Packet . . . . . . . . . . . . . . . . . 149 5.2 Piecewise Constant Potentials. . . . . . . . . . . . . . . . . . . . . . . . 153 5.2.1 General Remarks. . . . . . . . . . . . . . . . . . . . . . . . . . . 153 5.2.2 Potential Step. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 155 5.2.3 Potential Well. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 159 5.2.4 Potential Barrier . . . . . . . . . . . . . . . . . . . . . . . . . . . 164 5.3 Harmonic Oscillator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 165 6 Two-Dimensional Systems. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 171 6.1 Cartesian Coordinates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 171 6.2 Polar Coordinates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 174 7 Three-Dimensional Systems. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 181 7.1 Angular Momentum Algebra . . . . . . . . . . . . . . . . . . . . . . . . 182 7.2 Spherical Harmonics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 189 7.3 Spherically Symmetric Potential . . . . . . . . . . . . . . . . . . . . . . 197 7.4 Free Particle. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 201 7.5 Coulomb Potential and Hydrogen Atom. . . . . . . . . . . . . . . . . 206 References. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 213 8 Scattering Theory. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 215 8.1 Scattering Cross Section . . . . . . . . . . . . . . . . . . . . . . . . . . . 216 8.2 Born Approximation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 220 8.3 Partial Wave Expansion. . . . . . . . . . . . . . . . . . . . . . . . . . . . 225 Part III Advanced Topics 9 Spin. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 233 9.1 Spin 1/2 and Spin 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 233 9.2 Addition of Angular Momenta . . . . . . . . . . . . . . . . . . . . . . . 237 9.3 SO(3) and SU(2). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 244 10 Electromagnetic Interaction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 253 10.1 Hamiltonian Operator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 254 10.2 Gauge Invariance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 256 10.3 Magnetic Moment. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 259 10.4 Effects. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 261 10.4.1 Normal Zeeman Effect. . . . . . . . . . . . . . . . . . . . . . . 261 10.4.2 Stern-Gerlach Experiment. . . . . . . . . . . . . . . . . . . . . 263 10.4.3 Aharanov-Bohm Effect . . . . . . . . . . . . . . . . . . . . . . 264

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.