ebook img

Computing Polynomial Solutions and Annihilators of Integro-Differential Operators with Polynomial PDF

25 Pages·2017·0.8 MB·English
by  
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Computing Polynomial Solutions and Annihilators of Integro-Differential Operators with Polynomial

Computing Polynomial Solutions and Annihilators of Integro-Differential Operators with Polynomial Coefficients Alban Quadrat, Georg Regensburger To cite this version: Alban Quadrat, Georg Regensburger. Computing Polynomial Solutions and Annihilators of Integro- Differential Operators with Polynomial Coefficients. [Research Report] RR-9002, Inria Lille - Nord Europe; Institute for Algebra, Johannes Kepler University Linz. 2016, pp.24. ￿hal-01413907￿ HAL Id: hal-01413907 https://hal.inria.fr/hal-01413907 Submitted on 11 Dec 2016 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Computing Polynomial Solutions and Annihilators of Integro-Differential Operators with Polynomial Coefficients G N E A. Quadrat, G. Regensburger + R F 2-- 0 0 9 R-- R A/ RI N I N RESEARCH R S I REPORT 9 9 N° 9002 3 6 9- 4 December2016 2 0 N Project-TeamsNon-A SS I Computing Polynomial Solutions and Annihilators of Integro-Differential Operators with Polynomial Coefficients A.Quadrat*,G.Regensburger† Project-TeamsNon-A ResearchReport n°9002—December2016—21pages Abstract: Inthispaper,westudyalgorithmicaspectsofthealgebraoflinearordinaryintegro-differential operatorswithpolynomialcoefficients. EventhoughthisalgebraisnotNoetherianandhaszerodivisors, Bavula recently proved that it is coherent, which allows one to develop an algebraic systems theory over thisalgebra. Foranalgorithmicapproachtolinearsystemsofintegro-differentialequationswithboundary conditions, computing the kernel of matrices with entries in this algebra is a fundamental task. As a first step,wehavetofindannihilatorsofintegro-differentialoperators,which,inturn,isrelatedtothecomputa- tionofpolynomialsolutionsofsuchoperators. Foraclassoflinearoperatorsincludingintegro-differential operators,wepresentanalgorithmicapproachforcomputingpolynomialsolutionsandtheindex. Agen- eratingsetforrightannihilatorscanbeconstructedintermsofsuchpolynomialsolutions. Forinitialvalue problems,aninvolutionofthealgebraofintegro-differentialoperatorsthenallowsustocomputeleftannihi- lators,whichcanbeinterpretedascompatibilityconditionsofintegro-differentialequationswithboundary conditions. WeillustrateourapproachusinganimplementationinthecomputeralgebrasystemMaple. Key-words: Linearsystemstheory,ringsofintegro-differentialoperators,polynomialsolutions,indicial equation,compatibilityconditions,computeralgebra G.RegensburgerwassupportedbytheAustrianScienceFund(FWF):P27229. *InriaLille-NordEurope,Non-Aproject,ParcScientifiquedelaHauteBorne,40AvenueHalley,Bat.A-ParkPlaza,59650Villeneuve d’Ascq,France.Email:alban.quadrat@ inria.fr. †InstituteforAlgebra,JohannesKeplerUniversityLinz,Austria.Email:[email protected] RESEARCHCENTRE LILLE–NORDEUROPE ParcscientifiquedelaHaute-Borne 40avenueHalley-BâtA-ParkPlaza 59650Villeneuved’Ascq Calcul des solutions polynomiales et des annulateurs d’opérateurs intégro-différentiels à coefficients polynomiaux Résumé : Dans ce papier, nous étudions certains aspects algorithmiques de l’algèbre des opérateurs intégro- différentiels ordinaires linéaires à coefficients polynomiaux. Même si cette algèbre n’est pas noetherienne et admetdesdiviseursdezéro,Bavulaarécemmentmontréqu’elleétaitcohérente,cequipermetledéveloppement d’unethéoriealgébriquedessystèmeslinéairessurcettealgèbre. Pouruneapprochealgorithmiquedessystèmes linéaires d’équations intégro-différentielles ordinaires avec conditions aux bords, le calcul du noyau de matrices à coefficients dans cette algèbre est un problème fondamental. Pour cela, dans un premier temps, nous sommes amenés à calculer les annulateurs d’opérateurs intégro-différentiels, problème qui, à son tour, est relié au prob- lèmeducalculdessolutionspolynomialesdetelsopérateurs. Pouruneclassed’opérateurslinéairesincluantles opérateursintégro-différentiels,nousprésentonsuneapprochealgorithmiquepourlecalculdessolutionspolyno- mialesetdel’indice. Unensemblegénérateurdesannulateursàdroited’unopérateurintégro-différentielestalors construitgrâceaucalculdesolutionspolynomiales. Pourlesproblèmesavecconditionsinitiales, uneinvolution del’algèbredesopérateursintégro-différentielsnouspermetensuitedecalculerlesannulateursàgauche,quipeu- ventêtreinterprétéscommedesconditionsdecompatibilitéd’équationsintégro-différentiellesavecconditionsaux bords. Nousillustronsnotreapprocheàl’aided’uneimplémentationdanslesystèmedecalculformelMaple. Mots-clés : Théorie des systèmes linéaires, anneaux d’opérateurs intégro-différentiels, solutions polynomiales, équationindicielle,conditionsdecompatibilité,calculformel PolynomialSolutionsandAnnihilatorsofIntegro-DifferentialOperators 3 1 Introduction Ringsoffunctionaloperators(e.g., ringsofordinarydifferential(OD)operators, partialdifferential(PD)opera- tors,differentialtime-delayoperators,differentialdifferenceoperators)wererecentlyintroducedinmathematical systems theory. Since many control linear systems can be defined by means of a matrix with entries in a skew polynomial ring, in an Ore algebra or in an Ore extension of functional operators (i.e., classes of univariate or multivariatenoncommutativepolynomialrings)[16,39],theclassicalpolynomialapproachtolinearsystemsthe- orycanbegeneralizedyieldingamodule-theoreticapproachtolinearfunctionalsystems[19,33,34,41,45,47]. Symboliccomputationtechniques(e.g.,Gröbnerbasistechniques)andcomputeralgebrasystemscanthenbeused todevelopdedicatedpackagesforalgebraicsystemstheory[17,29]. Algebrasofordinaryintegro-differential(ID)operatorshaverecentlybeenstudiedwithinanalgebraicapproach in[8,9,10,11]andwithinanalgorithmicapproachin[40,42,43,22]. Thegoalofthelatterworksistoprovide analgebraicandalgorithmicframeworkforstudyingboundaryvalueproblemsandGreen’soperators. TheringofIDandtime-delay/dilatationoperatorswasintroducedin[37]todevelopapurelyalgorithmicap- proach to standard Artstein’s transformation of linear differential systems with delayed inputs. This work also advocatesfortheeffectivestudyoftheringofIDtime-delay/dilatationoperators. Thenormalformsofelements ofthisnoncommutativealgebrawillbestudiedinafuturepublicationbasedontheneweffectivetechniquesintro- ducedin[22,23]. Inthispaper,wefocusonitssubringofIDoperators. Wealsonotethateffectivecomputations overIDalgebrasplayanimportantroleinparameterestimationproblemsasshownin[15]. EventhoughlinearsystemsofIDequationsplayanimportantroleindifferentdomainsandapplications(e.g., PIDcontrollers),itdoesnotseemthattheyhavebeenextensivelystudiedbythemathematicalsystemscommunity. Forboundaryvaluesystems, wereferto[20,21]andthereferencestherein. Thefirstpurposeofthispaperisto introduceconcepts,techniques,andresultsdevelopedintheaboverecentsworks. Inparticular,weemphasizethat thealgebraicstructureoftheringofIDoperatorswithpolynomialcoefficientsismuchmoreinvolved(e.g.,zero divisors,non-Noetherianity)thantheoneoftheringofODoperatorswithpolynomialcoefficients(theso-called Weylalgebra). Thefundamentalissueofcomputingleft/rightkernelofamatrixofIDoperatorshastobesolved towardsdevelopingasystem-theoreticapproachtolinearIDsystems. Formoredetails,see[16,36]. ThesecondgoalofthispaperistostudythisproblemforasingleIDoperator,thatis,computingitsannihilator. Withinarepresentationapproach,weshowthatthisproblemisrelatedtothecomputationofpolynomialsolutions of ID operators, a problem that is also studied in detail. To solve this problem, we introduce the concept of a rational indicial equation for a linear operator acting on the polynomial ring. This approach allows us to find againandgeneralizestandardresultsontheindicialequationclassicallyusedinthetheoryoflinearODequations [2,3,5]. Thischapterisbasedontheconferencepaper[38].Itincludesaself-containedintroductiontoordinaryintegro- differentialoperatorswithpolynomialcoefficientswithseveralevaluationsincludingnormalforms(Sections2–4). Allothersectionshavebeenrevisedandextended. 2 The ring of Ordinary Integro-Differential Operators with Polynomial Coefficients BeforediscussingtheringofIDoperatorswithpolynomialcoefficients,asanintroducingexample,wefirstrecall twostandardconstructionsoftheringAofODoperatorswithpolynomialcoefficients(alsocalledtheWeylalgebra anddenotedbyA (k),wherek isafield). Thefirstconstructionisasthesubalgebrak(cid:104)t,∂(cid:105)ofalllinearmapson 1 thepolynomialringk[t]andthesecondisbymeansofgeneratorsandrelations. Inwhatfollows,letkdenoteafixedfield,whichcontainsQ. Letend (k[t])denotethek-algebraformedbyall k k-linearmapsfromthepolynomialringk[t]toitself. Weconsiderthek-subalgebrak(cid:104)t,∂(cid:105)ofend (k[t])generated k bythefollowingtwok-linearmaps t: tn(cid:55)−→tn+1 and ∂: tn(cid:55)−→ntn−1 definedonthebasis(tn)n∈N ofk[t]. Theyrespectivelycorrespondtothemultiplicationoperatorandthederivation onthepolynomialringk[t],namely: t: k[t] −→ k[t] ∂: k[t] −→ k[t] and (1) p (cid:55)−→ tp, p (cid:55)−→ dp. dt RRn°9002 4 Quadrat&Regensburger Oneimmediatelyverifiesthatwehave d(tp) dp ∀p∈k[t], (∂◦t)(p)= =t +p=(t◦∂+id)(p), dt dt whereid(alsodenotedby1)istheidentitymaponk[t]. ItshowsthattheLeibnizrule ∂◦t=t◦∂+id holdsintheoperatoralgebrak(cid:104)t,∂(cid:105). Using the Leibniz rule, we can define the Weyl algebra also by generators and relations: Let k(cid:104)T,D(cid:105) be the free associative k-algebra on the set {T,D}, that is, the k-vector space with the basis formed by all words over {T,D}andthemultiplicationofbasiselementsdefinedbyconcatenation. Letnow J=(DT−TD−1)⊆k(cid:104)T,D(cid:105) denotethetwo-sidedidealgeneratedbyDT−TD−1anddefinethek-algebra: A=k(cid:104)T,D(cid:105)/J. Bydefinition,theLeibnizrule DT ≡TD+1 modJ holdsinA. Usingthisidentity,eachelementofd∈Acanuniquelybewrittenasafinitesum d≡∑a TiDj modJ ij withcoefficientsa ∈k. ij Toseethatthetwoconstructionsaboveareequivalent,onecanusethefactthatAisasimplering,thatis,its onlypropertwo-sidedidealisthezeroideal(seeforexample,[18]). Henceeveryringhomomorphismisinjective andsothek-algebrahomomorphismA−→k(cid:104)t,∂(cid:105)mapping T+J(cid:55)−→t and D+J(cid:55)−→∂ isanisomorphism. Inotherwords,eachd∈Acanbeidentifiedwiththefollowingcorrespondingk-linearmap L : k[t] −→ k[t], d p (cid:55)−→ d(p), whered(p)denotestheactionofd on p. Inthefollowing,weuseasimilarapproachtointroduceandstudythealgebraofIDoperatorswithpolynomial coefficients. IDoperatorswithpolynomialcoefficientswerestudiedin[8,10]asageneralizedWeylalgebra[7,6]. See [40]for theconstruction of ordinaryID operatorswith polynomialcoefficients as afactor algebraof a skew polynomialring(see,e.g.,[16,31]andthereferencestherein). FortheconstructionofthealgebraofIDoperators F (cid:104)∂, (cid:105) defined over an ordinary ID algebra F and endowed with a set of characters (that is, multiplicative Φ (cid:114) linearfunctionals)Φ,wereferto[42,43]. ThisconstructionisbasedonaparametrizednoncommutativeGröbner basis; seeSection3forthecaseofpolynomialcoefficients. Forabasis-freeconstructionusingafinitereduction systemintensoralgebras,wereferto[22]. Incontrastto[8,10],thelasttwoapproachesallowsonetohavemore thanonepointevaluationasdescribedinSection4,whichiscrucialforthestudyofboundaryproblems. Definition1. Thek-algebraofordinaryIDoperatorswithpolynomialcoefficientsisdefinedasthek-subalgebra k(cid:104)t,∂, (cid:105)⊆end (k[t]), (cid:114) k withtheoperatorst and∂ definedasin(1)and : k[t] −→ k[t] (cid:114) tn (cid:55)−→ tn+1/(n+1), definedonthebasis(tn)n∈Nofk[t]. Inria PolynomialSolutionsandAnnihilatorsofIntegro-DifferentialOperators 5 Theintegraloperator correspondstotheusualintegralstartingat0: (cid:114) : k[t] −→ k[t] (cid:114) p (cid:55)−→ (cid:82)tp(s)ds. 0 Onecanverifydirectlythatthefundamentaltheoremofcalculus ∂◦ =id (cid:114) holds. Moreover,weseethat E=id− ◦∂ (cid:114) correspondstotheevaluationat0: E: k[t] −→ k[t] p (cid:55)−→ p(0). Hence,assoonaswehaveanintegral,wealsohaveoneevaluationmaptotheconstantsk“forfree”,whichallows us to define and study initial value problems in terms of integro-differential operators. Note that the operator E naturallyinducestheexistenceofzerodivisors. Forinstance,wehave: E◦t=0. Basedonthebasicidentitiesabove,wecanconstructthealgebraofintegro-differentialoperatorswithpolyno- mialcoefficientsalsobygeneratorsandrelations. Definition2. Wedefinethek-algebra I=k(cid:104)T,D,I,E(cid:105)/J, whereJisthetwo-sidedidealofrelationsgeneratedbythefollowingelements: DT−TD−1, DI−1, ID+E−1, ET. (2) WenotebyT =T+J(resp.,D=D+J,I=I+J,E=E+J)theresidueclassofT (resp.,D,I,E)inI. 3 Normal Forms Since we have now four defining identities for I (see (2)) instead of one as for the Weyl algebra A, it is more involvedtoobtainthenormalformofanelementofI,i.e.,itsuniqueexpressionasanoncommutativepolynomial in the operators T,D,I and E modulo the relations (2). In this section, we informally discuss the construction ofanoncommutativeGröbnerbasisforthedefiningidealfollowingBuchberger’salgorithm. Forbackgroundon noncommutativeGröbnerbases,wereferto[12,32,46,13]. Inthenoncommutativecase,notethatBuchberger’s algorithmdoesnotterminateingeneralandthepropertyofhavingafiniteGröbnerbasisisundecidable. However, inourcasewecan“guess”aparametrizedGröbnerbasisfromthecorrespondingS-polynomialcomputations. See[42,43]forfurtherdetailsonaparametrizedGröbnerbasisforthedefiningrelationsforintegro-differential operatorsoveranordinaryIDalgebraandthecorrespondingnormalforms. Ananalogousfinitetensorreduction systemandtherelatedS-polynomialcomputationsusingthepackageTenRescanbefoundin[22,23]. WedenotetheS-polynomialbetweentwopolynomialsoftheform UV−P and VW−Q, with“leadingterms”UV andVW by: S(UV,VW)=PW−UQ. Inthefollowing,weconsideragradedpartialorderwithD>T andI>T. WefirstcomputetheS-polynomial betweenthepolynomials DI−1 and ID+E−1 andobtain: S(DI,ID)=1D−D(1−E)=DE. RRn°9002 6 Quadrat&Regensburger Soweneedtoaddthepolynomial DE to the generators of our ideal, which corresponds to the evaluation mapping to k. The S-polynomial between ID+E−1andthenewpolynomialgives: S(ID,DE)=(1−E)E. Soweobtain E2−E, whichcorrespondstotheevaluationactingasaprojectorontok. Since S(ID,DI)=(1−E)I−I1=−EI, wealsohavetoaddthepolynomial EI toourgenerators,whichcorrespondstotheintegral(cid:82)t evaluatedat0being0. 0 TheS-polynomialbetween ID−1+E and DT−TD−1 isgivenby: S(ID,DT)=(1−E)T−I(TD+1)=T−ET−ITD−I. UsingthepolynomialET fromtheoriginalgenerators,weseethatweneedtoaddthepolynomial: ITD−T+I. ThisgivesrisetonewS-polynomialswithDT−TD−1andoneseesinductivelythatweneedtoaddthefamily ∀n≥1, ITnD−Tn+nITn−1 toourgenerators,correspondingtointegrationbyparts. ComputingtheS-polynomialswiththisfamilyandDE, wethenobtain IE−TE, and ∀n≥1, ITnE−Tn+1/(n+1)E whichcorrespondstothek-linearityoftheintegral. Finally,theS-polynomialbetween ITD−T+I and DI−1 isgivenby: S(ITD,DI)=(T−I)I−IT. Soweobtainthepolynomial I2−TI+IT, allowingtoreduceaniteratedintegraltoasumoftwosingleintegrals. Again,thisidentitygivesrisetoaninfinite family ∀n≥1, ITnI−(Tn+1I+ITn+1)/(n+1) ofnewgenerators. Collectingalltheidentitiesabove,onecanverifythatallparametrizedS-polynomialsnowreducetozeroand wehaveindeedaGröbnerbasisforthedefiningidentities(comparewith[42, Proposition13]and[22, Theorem 5.1]). Inria PolynomialSolutionsandAnnihilatorsofIntegro-DifferentialOperators 7 Theorem1. Thegenerators DT−TD−1, DI−1, ID+E−1, ET, DE, E2−E, EI, IE−TE, I2−TI+IT, andtheparametrizedgenerators  ITnD−Tn+nITn−1,  ∀n≥1, ITnE−Tn+1/(n+1)E,  ITnI−(Tn+1I+ITn+1)/(n+1), formanoncommutativeGröbnerbasisfortheidealJofI(seeDefinition2)withrespecttoagradedpartialorder withD>T andI>T. BythenormalformcorrespondingtotheGröbnerbasisfromTheorem1,usingthenotationsofDefinition2, eachd∈Icanuniquelybewrittenasasum d=d +d +d , 1 2 3 where d =∑a TiDj, d =∑b TiITj, d =∑f TiEDj (3) 1 ij 2 ij 3 ij arerespectivelyanODoperator,anintegraloperator,andaboundaryoperator,witha ,b ,and f ∈k,andd , ij ij ij 1 d ,andd containonlyfinitelynonzerosummands. 2 3 To see that the definition of integro-differential operators via generators and relations and Definition 1 are equivalent, we can use the fact that I is “almost” a simple ring. The only nonzero proper two-sided ideal is the ideal (E) generated by the “evaluation” E. This was first proved by Bavula in [8]. Here we give an alternative proofbasedonthenormalformsanddirectsumdecompositionabove,whichalsogeneralizestothemoregeneral settingincludingseveralevaluationsmentionedinthenextsection. Proposition1. Theonlynonzeropropertwo-sidedidealofIis(E). Proof. Letd∈I\(E)withd≡d +d +d asin(3)andd +d (cid:54)=0byassumption. Usingtheidentities 1 2 3 1 2 DT =TD+1, DI=1, DE=0, wecanfindak∈Nsuchthat k D d∈A\{0} isanonzerodifferentialoperatorandthestatementfollowssinceAisasimplering. Corollary1. Thek-algebrahomomorphismχ: I−→k(cid:104)t,∂, (cid:105)mapping (cid:114) T (cid:55)−→t, D(cid:55)−→∂, E(cid:55)−→E, I(cid:55)−→ (cid:114) isanisomorphism. Inotherwords,wecanidentifyeachd∈Iwiththecorrespondingk-linearmap L : k[t] −→ k[t], d (4) p (cid:55)−→ d(p), whered(p)denotestheactionofd on p. Finally,using(3),uptoisomorphism,wehavethefollowingdirectsumdecomposition I=A⊕k[t] k[t]⊕(E) (cid:114) withthetwo-sidedideal(E)ofboundaryoperatorsgeneratedbyE. RRn°9002

Description:
https://hal.inria.fr/hal-01413907 opérateurs intégro-différentiels, nous présentons une approche algorithmique pour le calcul des solutions polyno- .. m = δjl eim,. (9) where δjl = 1 for j = l, and 0 otherwise; see also [24] or [28, Ex. 21.26]. In particular, I contains infinitely many ortho
See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.