Table Of ContentComputing Polynomial Solutions and Annihilators of
Integro-Differential Operators with Polynomial
Coefficients
Alban Quadrat, Georg Regensburger
To cite this version:
Alban Quadrat, Georg Regensburger. Computing Polynomial Solutions and Annihilators of Integro-
Differential Operators with Polynomial Coefficients. [Research Report] RR-9002, Inria Lille - Nord
Europe; Institute for Algebra, Johannes Kepler University Linz. 2016, pp.24. hal-01413907
HAL Id: hal-01413907
https://hal.inria.fr/hal-01413907
Submitted on 11 Dec 2016
HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est
archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents
entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non,
lished or not. The documents may come from émanant des établissements d’enseignement et de
teaching and research institutions in France or recherche français ou étrangers, des laboratoires
abroad, or from public or private research centers. publics ou privés.
Computing Polynomial
Solutions and
Annihilators of
Integro-Differential
Operators with
Polynomial Coefficients
G
N
E
A. Quadrat, G. Regensburger +
R
F
2--
0
0
9
R--
R
A/
RI
N
I
N
RESEARCH R
S
I
REPORT
9
9
N° 9002 3
6
9-
4
December2016 2
0
N
Project-TeamsNon-A SS
I
Computing Polynomial Solutions and Annihilators of
Integro-Differential Operators with Polynomial
Coefficients
A.Quadrat*,G.Regensburger†
Project-TeamsNon-A
ResearchReport n°9002—December2016—21pages
Abstract: Inthispaper,westudyalgorithmicaspectsofthealgebraoflinearordinaryintegro-differential
operatorswithpolynomialcoefficients. EventhoughthisalgebraisnotNoetherianandhaszerodivisors,
Bavula recently proved that it is coherent, which allows one to develop an algebraic systems theory over
thisalgebra. Foranalgorithmicapproachtolinearsystemsofintegro-differentialequationswithboundary
conditions, computing the kernel of matrices with entries in this algebra is a fundamental task. As a first
step,wehavetofindannihilatorsofintegro-differentialoperators,which,inturn,isrelatedtothecomputa-
tionofpolynomialsolutionsofsuchoperators. Foraclassoflinearoperatorsincludingintegro-differential
operators,wepresentanalgorithmicapproachforcomputingpolynomialsolutionsandtheindex. Agen-
eratingsetforrightannihilatorscanbeconstructedintermsofsuchpolynomialsolutions. Forinitialvalue
problems,aninvolutionofthealgebraofintegro-differentialoperatorsthenallowsustocomputeleftannihi-
lators,whichcanbeinterpretedascompatibilityconditionsofintegro-differentialequationswithboundary
conditions. WeillustrateourapproachusinganimplementationinthecomputeralgebrasystemMaple.
Key-words: Linearsystemstheory,ringsofintegro-differentialoperators,polynomialsolutions,indicial
equation,compatibilityconditions,computeralgebra
G.RegensburgerwassupportedbytheAustrianScienceFund(FWF):P27229.
*InriaLille-NordEurope,Non-Aproject,ParcScientifiquedelaHauteBorne,40AvenueHalley,Bat.A-ParkPlaza,59650Villeneuve
d’Ascq,France.Email:alban.quadrat@ inria.fr.
†InstituteforAlgebra,JohannesKeplerUniversityLinz,Austria.Email:georg.regensburger@jku.at
RESEARCHCENTRE
LILLE–NORDEUROPE
ParcscientifiquedelaHaute-Borne
40avenueHalley-BâtA-ParkPlaza
59650Villeneuved’Ascq
Calcul des solutions polynomiales et des annulateurs d’opérateurs
intégro-différentiels à coefficients polynomiaux
Résumé : Dans ce papier, nous étudions certains aspects algorithmiques de l’algèbre des opérateurs intégro-
différentiels ordinaires linéaires à coefficients polynomiaux. Même si cette algèbre n’est pas noetherienne et
admetdesdiviseursdezéro,Bavulaarécemmentmontréqu’elleétaitcohérente,cequipermetledéveloppement
d’unethéoriealgébriquedessystèmeslinéairessurcettealgèbre. Pouruneapprochealgorithmiquedessystèmes
linéaires d’équations intégro-différentielles ordinaires avec conditions aux bords, le calcul du noyau de matrices
à coefficients dans cette algèbre est un problème fondamental. Pour cela, dans un premier temps, nous sommes
amenés à calculer les annulateurs d’opérateurs intégro-différentiels, problème qui, à son tour, est relié au prob-
lèmeducalculdessolutionspolynomialesdetelsopérateurs. Pouruneclassed’opérateurslinéairesincluantles
opérateursintégro-différentiels,nousprésentonsuneapprochealgorithmiquepourlecalculdessolutionspolyno-
mialesetdel’indice. Unensemblegénérateurdesannulateursàdroited’unopérateurintégro-différentielestalors
construitgrâceaucalculdesolutionspolynomiales. Pourlesproblèmesavecconditionsinitiales, uneinvolution
del’algèbredesopérateursintégro-différentielsnouspermetensuitedecalculerlesannulateursàgauche,quipeu-
ventêtreinterprétéscommedesconditionsdecompatibilitéd’équationsintégro-différentiellesavecconditionsaux
bords. Nousillustronsnotreapprocheàl’aided’uneimplémentationdanslesystèmedecalculformelMaple.
Mots-clés : Théorie des systèmes linéaires, anneaux d’opérateurs intégro-différentiels, solutions polynomiales,
équationindicielle,conditionsdecompatibilité,calculformel
PolynomialSolutionsandAnnihilatorsofIntegro-DifferentialOperators 3
1 Introduction
Ringsoffunctionaloperators(e.g., ringsofordinarydifferential(OD)operators, partialdifferential(PD)opera-
tors,differentialtime-delayoperators,differentialdifferenceoperators)wererecentlyintroducedinmathematical
systems theory. Since many control linear systems can be defined by means of a matrix with entries in a skew
polynomial ring, in an Ore algebra or in an Ore extension of functional operators (i.e., classes of univariate or
multivariatenoncommutativepolynomialrings)[16,39],theclassicalpolynomialapproachtolinearsystemsthe-
orycanbegeneralizedyieldingamodule-theoreticapproachtolinearfunctionalsystems[19,33,34,41,45,47].
Symboliccomputationtechniques(e.g.,Gröbnerbasistechniques)andcomputeralgebrasystemscanthenbeused
todevelopdedicatedpackagesforalgebraicsystemstheory[17,29].
Algebrasofordinaryintegro-differential(ID)operatorshaverecentlybeenstudiedwithinanalgebraicapproach
in[8,9,10,11]andwithinanalgorithmicapproachin[40,42,43,22]. Thegoalofthelatterworksistoprovide
analgebraicandalgorithmicframeworkforstudyingboundaryvalueproblemsandGreen’soperators.
TheringofIDandtime-delay/dilatationoperatorswasintroducedin[37]todevelopapurelyalgorithmicap-
proach to standard Artstein’s transformation of linear differential systems with delayed inputs. This work also
advocatesfortheeffectivestudyoftheringofIDtime-delay/dilatationoperators. Thenormalformsofelements
ofthisnoncommutativealgebrawillbestudiedinafuturepublicationbasedontheneweffectivetechniquesintro-
ducedin[22,23]. Inthispaper,wefocusonitssubringofIDoperators. Wealsonotethateffectivecomputations
overIDalgebrasplayanimportantroleinparameterestimationproblemsasshownin[15].
EventhoughlinearsystemsofIDequationsplayanimportantroleindifferentdomainsandapplications(e.g.,
PIDcontrollers),itdoesnotseemthattheyhavebeenextensivelystudiedbythemathematicalsystemscommunity.
Forboundaryvaluesystems, wereferto[20,21]andthereferencestherein. Thefirstpurposeofthispaperisto
introduceconcepts,techniques,andresultsdevelopedintheaboverecentsworks. Inparticular,weemphasizethat
thealgebraicstructureoftheringofIDoperatorswithpolynomialcoefficientsismuchmoreinvolved(e.g.,zero
divisors,non-Noetherianity)thantheoneoftheringofODoperatorswithpolynomialcoefficients(theso-called
Weylalgebra). Thefundamentalissueofcomputingleft/rightkernelofamatrixofIDoperatorshastobesolved
towardsdevelopingasystem-theoreticapproachtolinearIDsystems. Formoredetails,see[16,36].
ThesecondgoalofthispaperistostudythisproblemforasingleIDoperator,thatis,computingitsannihilator.
Withinarepresentationapproach,weshowthatthisproblemisrelatedtothecomputationofpolynomialsolutions
of ID operators, a problem that is also studied in detail. To solve this problem, we introduce the concept of a
rational indicial equation for a linear operator acting on the polynomial ring. This approach allows us to find
againandgeneralizestandardresultsontheindicialequationclassicallyusedinthetheoryoflinearODequations
[2,3,5].
Thischapterisbasedontheconferencepaper[38].Itincludesaself-containedintroductiontoordinaryintegro-
differentialoperatorswithpolynomialcoefficientswithseveralevaluationsincludingnormalforms(Sections2–4).
Allothersectionshavebeenrevisedandextended.
2 The ring of Ordinary Integro-Differential Operators with Polynomial
Coefficients
BeforediscussingtheringofIDoperatorswithpolynomialcoefficients,asanintroducingexample,wefirstrecall
twostandardconstructionsoftheringAofODoperatorswithpolynomialcoefficients(alsocalledtheWeylalgebra
anddenotedbyA (k),wherek isafield). Thefirstconstructionisasthesubalgebrak(cid:104)t,∂(cid:105)ofalllinearmapson
1
thepolynomialringk[t]andthesecondisbymeansofgeneratorsandrelations.
Inwhatfollows,letkdenoteafixedfield,whichcontainsQ. Letend (k[t])denotethek-algebraformedbyall
k
k-linearmapsfromthepolynomialringk[t]toitself. Weconsiderthek-subalgebrak(cid:104)t,∂(cid:105)ofend (k[t])generated
k
bythefollowingtwok-linearmaps
t: tn(cid:55)−→tn+1 and ∂: tn(cid:55)−→ntn−1
definedonthebasis(tn)n∈N ofk[t]. Theyrespectivelycorrespondtothemultiplicationoperatorandthederivation
onthepolynomialringk[t],namely:
t: k[t] −→ k[t] ∂: k[t] −→ k[t]
and (1)
p (cid:55)−→ tp, p (cid:55)−→ dp.
dt
RRn°9002
4 Quadrat&Regensburger
Oneimmediatelyverifiesthatwehave
d(tp) dp
∀p∈k[t], (∂◦t)(p)= =t +p=(t◦∂+id)(p),
dt dt
whereid(alsodenotedby1)istheidentitymaponk[t]. ItshowsthattheLeibnizrule
∂◦t=t◦∂+id
holdsintheoperatoralgebrak(cid:104)t,∂(cid:105).
Using the Leibniz rule, we can define the Weyl algebra also by generators and relations: Let k(cid:104)T,D(cid:105) be the
free associative k-algebra on the set {T,D}, that is, the k-vector space with the basis formed by all words over
{T,D}andthemultiplicationofbasiselementsdefinedbyconcatenation. Letnow
J=(DT−TD−1)⊆k(cid:104)T,D(cid:105)
denotethetwo-sidedidealgeneratedbyDT−TD−1anddefinethek-algebra:
A=k(cid:104)T,D(cid:105)/J.
Bydefinition,theLeibnizrule
DT ≡TD+1 modJ
holdsinA. Usingthisidentity,eachelementofd∈Acanuniquelybewrittenasafinitesum
d≡∑a TiDj modJ
ij
withcoefficientsa ∈k.
ij
Toseethatthetwoconstructionsaboveareequivalent,onecanusethefactthatAisasimplering,thatis,its
onlypropertwo-sidedidealisthezeroideal(seeforexample,[18]). Henceeveryringhomomorphismisinjective
andsothek-algebrahomomorphismA−→k(cid:104)t,∂(cid:105)mapping
T+J(cid:55)−→t and D+J(cid:55)−→∂
isanisomorphism. Inotherwords,eachd∈Acanbeidentifiedwiththefollowingcorrespondingk-linearmap
L : k[t] −→ k[t],
d
p (cid:55)−→ d(p),
whered(p)denotestheactionofd on p.
Inthefollowing,weuseasimilarapproachtointroduceandstudythealgebraofIDoperatorswithpolynomial
coefficients. IDoperatorswithpolynomialcoefficientswerestudiedin[8,10]asageneralizedWeylalgebra[7,6].
See [40]for theconstruction of ordinaryID operatorswith polynomialcoefficients as afactor algebraof a skew
polynomialring(see,e.g.,[16,31]andthereferencestherein). FortheconstructionofthealgebraofIDoperators
F (cid:104)∂, (cid:105) defined over an ordinary ID algebra F and endowed with a set of characters (that is, multiplicative
Φ (cid:114)
linearfunctionals)Φ,wereferto[42,43]. ThisconstructionisbasedonaparametrizednoncommutativeGröbner
basis; seeSection3forthecaseofpolynomialcoefficients. Forabasis-freeconstructionusingafinitereduction
systemintensoralgebras,wereferto[22]. Incontrastto[8,10],thelasttwoapproachesallowsonetohavemore
thanonepointevaluationasdescribedinSection4,whichiscrucialforthestudyofboundaryproblems.
Definition1. Thek-algebraofordinaryIDoperatorswithpolynomialcoefficientsisdefinedasthek-subalgebra
k(cid:104)t,∂, (cid:105)⊆end (k[t]),
(cid:114) k
withtheoperatorst and∂ definedasin(1)and
: k[t] −→ k[t]
(cid:114)
tn (cid:55)−→ tn+1/(n+1),
definedonthebasis(tn)n∈Nofk[t].
Inria
PolynomialSolutionsandAnnihilatorsofIntegro-DifferentialOperators 5
Theintegraloperator correspondstotheusualintegralstartingat0:
(cid:114)
: k[t] −→ k[t]
(cid:114)
p (cid:55)−→ (cid:82)tp(s)ds.
0
Onecanverifydirectlythatthefundamentaltheoremofcalculus
∂◦ =id
(cid:114)
holds. Moreover,weseethat
E=id− ◦∂
(cid:114)
correspondstotheevaluationat0:
E: k[t] −→ k[t]
p (cid:55)−→ p(0).
Hence,assoonaswehaveanintegral,wealsohaveoneevaluationmaptotheconstantsk“forfree”,whichallows
us to define and study initial value problems in terms of integro-differential operators. Note that the operator E
naturallyinducestheexistenceofzerodivisors. Forinstance,wehave:
E◦t=0.
Basedonthebasicidentitiesabove,wecanconstructthealgebraofintegro-differentialoperatorswithpolyno-
mialcoefficientsalsobygeneratorsandrelations.
Definition2. Wedefinethek-algebra
I=k(cid:104)T,D,I,E(cid:105)/J,
whereJisthetwo-sidedidealofrelationsgeneratedbythefollowingelements:
DT−TD−1, DI−1, ID+E−1, ET. (2)
WenotebyT =T+J(resp.,D=D+J,I=I+J,E=E+J)theresidueclassofT (resp.,D,I,E)inI.
3 Normal Forms
Since we have now four defining identities for I (see (2)) instead of one as for the Weyl algebra A, it is more
involvedtoobtainthenormalformofanelementofI,i.e.,itsuniqueexpressionasanoncommutativepolynomial
in the operators T,D,I and E modulo the relations (2). In this section, we informally discuss the construction
ofanoncommutativeGröbnerbasisforthedefiningidealfollowingBuchberger’salgorithm. Forbackgroundon
noncommutativeGröbnerbases,wereferto[12,32,46,13]. Inthenoncommutativecase,notethatBuchberger’s
algorithmdoesnotterminateingeneralandthepropertyofhavingafiniteGröbnerbasisisundecidable. However,
inourcasewecan“guess”aparametrizedGröbnerbasisfromthecorrespondingS-polynomialcomputations.
See[42,43]forfurtherdetailsonaparametrizedGröbnerbasisforthedefiningrelationsforintegro-differential
operatorsoveranordinaryIDalgebraandthecorrespondingnormalforms. Ananalogousfinitetensorreduction
systemandtherelatedS-polynomialcomputationsusingthepackageTenRescanbefoundin[22,23].
WedenotetheS-polynomialbetweentwopolynomialsoftheform
UV−P and VW−Q,
with“leadingterms”UV andVW by:
S(UV,VW)=PW−UQ.
Inthefollowing,weconsideragradedpartialorderwithD>T andI>T. WefirstcomputetheS-polynomial
betweenthepolynomials
DI−1 and ID+E−1
andobtain:
S(DI,ID)=1D−D(1−E)=DE.
RRn°9002
6 Quadrat&Regensburger
Soweneedtoaddthepolynomial
DE
to the generators of our ideal, which corresponds to the evaluation mapping to k. The S-polynomial between
ID+E−1andthenewpolynomialgives:
S(ID,DE)=(1−E)E.
Soweobtain
E2−E,
whichcorrespondstotheevaluationactingasaprojectorontok. Since
S(ID,DI)=(1−E)I−I1=−EI,
wealsohavetoaddthepolynomial
EI
toourgenerators,whichcorrespondstotheintegral(cid:82)t evaluatedat0being0.
0
TheS-polynomialbetween
ID−1+E and DT−TD−1
isgivenby:
S(ID,DT)=(1−E)T−I(TD+1)=T−ET−ITD−I.
UsingthepolynomialET fromtheoriginalgenerators,weseethatweneedtoaddthepolynomial:
ITD−T+I.
ThisgivesrisetonewS-polynomialswithDT−TD−1andoneseesinductivelythatweneedtoaddthefamily
∀n≥1, ITnD−Tn+nITn−1
toourgenerators,correspondingtointegrationbyparts. ComputingtheS-polynomialswiththisfamilyandDE,
wethenobtain
IE−TE,
and
∀n≥1, ITnE−Tn+1/(n+1)E
whichcorrespondstothek-linearityoftheintegral.
Finally,theS-polynomialbetween
ITD−T+I and DI−1
isgivenby:
S(ITD,DI)=(T−I)I−IT.
Soweobtainthepolynomial
I2−TI+IT,
allowingtoreduceaniteratedintegraltoasumoftwosingleintegrals. Again,thisidentitygivesrisetoaninfinite
family
∀n≥1, ITnI−(Tn+1I+ITn+1)/(n+1)
ofnewgenerators.
Collectingalltheidentitiesabove,onecanverifythatallparametrizedS-polynomialsnowreducetozeroand
wehaveindeedaGröbnerbasisforthedefiningidentities(comparewith[42, Proposition13]and[22, Theorem
5.1]).
Inria
PolynomialSolutionsandAnnihilatorsofIntegro-DifferentialOperators 7
Theorem1. Thegenerators
DT−TD−1, DI−1, ID+E−1, ET,
DE, E2−E, EI, IE−TE, I2−TI+IT,
andtheparametrizedgenerators
ITnD−Tn+nITn−1,
∀n≥1, ITnE−Tn+1/(n+1)E,
ITnI−(Tn+1I+ITn+1)/(n+1),
formanoncommutativeGröbnerbasisfortheidealJofI(seeDefinition2)withrespecttoagradedpartialorder
withD>T andI>T.
BythenormalformcorrespondingtotheGröbnerbasisfromTheorem1,usingthenotationsofDefinition2,
eachd∈Icanuniquelybewrittenasasum
d=d +d +d ,
1 2 3
where
d =∑a TiDj, d =∑b TiITj, d =∑f TiEDj (3)
1 ij 2 ij 3 ij
arerespectivelyanODoperator,anintegraloperator,andaboundaryoperator,witha ,b ,and f ∈k,andd ,
ij ij ij 1
d ,andd containonlyfinitelynonzerosummands.
2 3
To see that the definition of integro-differential operators via generators and relations and Definition 1 are
equivalent, we can use the fact that I is “almost” a simple ring. The only nonzero proper two-sided ideal is the
ideal (E) generated by the “evaluation” E. This was first proved by Bavula in [8]. Here we give an alternative
proofbasedonthenormalformsanddirectsumdecompositionabove,whichalsogeneralizestothemoregeneral
settingincludingseveralevaluationsmentionedinthenextsection.
Proposition1. Theonlynonzeropropertwo-sidedidealofIis(E).
Proof. Letd∈I\(E)withd≡d +d +d asin(3)andd +d (cid:54)=0byassumption. Usingtheidentities
1 2 3 1 2
DT =TD+1, DI=1, DE=0,
wecanfindak∈Nsuchthat
k
D d∈A\{0}
isanonzerodifferentialoperatorandthestatementfollowssinceAisasimplering.
Corollary1. Thek-algebrahomomorphismχ: I−→k(cid:104)t,∂, (cid:105)mapping
(cid:114)
T (cid:55)−→t, D(cid:55)−→∂, E(cid:55)−→E, I(cid:55)−→
(cid:114)
isanisomorphism.
Inotherwords,wecanidentifyeachd∈Iwiththecorrespondingk-linearmap
L : k[t] −→ k[t],
d
(4)
p (cid:55)−→ d(p),
whered(p)denotestheactionofd on p.
Finally,using(3),uptoisomorphism,wehavethefollowingdirectsumdecomposition
I=A⊕k[t] k[t]⊕(E)
(cid:114)
withthetwo-sidedideal(E)ofboundaryoperatorsgeneratedbyE.
RRn°9002
Description:https://hal.inria.fr/hal-01413907 opérateurs intégro-différentiels, nous présentons une approche algorithmique pour le calcul des solutions polyno- .. m = δjl eim,. (9) where δjl = 1 for j = l, and 0 otherwise; see also [24] or [28, Ex. 21.26]. In particular, I contains infinitely many ortho