ebook img

Computing Algorithms for Solutions of Problems in Applied Mathematics and their Standard Program Realization 2 Stochastic Mathematics PDF

366 Pages·2015·1.814 MB·english
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Computing Algorithms for Solutions of Problems in Applied Mathematics and their Standard Program Realization 2 Stochastic Mathematics

MATHEMATICS RESEARCH DEVELOPMENTS C A OMPUTING LGORITHMS S P FOR OLUTIONS OF ROBLEMS A M T IN PPLIED ATHEMATICS AND HEIR S P R TANDARD ROGRAM EALIZATION P 2 ART S M TOCHASTIC ATHEMATICS K. J. KACHIASHVILI, D. YU. MELIKDZHANIAN AND A. I. PRANGISHVILI New York Copyright © 2015 by Nova Science Publishers, Inc. ISBN: (cid:28)(cid:26)(cid:27)(cid:16)(cid:20)(cid:16)(cid:25)(cid:22)(cid:23)(cid:25)(cid:22)(cid:16)(cid:26)(cid:20)(cid:24)(cid:16)(cid:21)(cid:3)(cid:11)(cid:72)(cid:16)(cid:37)(cid:82)(cid:82)(cid:78)(cid:12) Contents ListofFigures xiii ListofTables xv 1 NumericalMethodsofProbabilityTheoryandMathematicalStatistics 1 1.1 MethodsofCombinatorics . . . . . . . . . . . . . . . . . . . . . . . . . . 2 1.1.1 MainConceptsandTheoremsofCombinatorics. . . . . . . . . . . 2 1.1.2 AlgorithmsfortheGenerationofNumericalSequences . . . . . . . 4 1.2 DiscreteProbabilityDistributions . . . . . . . . . . . . . . . . . . . . . . 8 1.2.1 SimplestDiscreteDistributions . . . . . . . . . . . . . . . . . . . 8 1.2.2 BinomialDistribution . . . . . . . . . . . . . . . . . . . . . . . . 9 1.2.3 GeometricandPascalDistributions . . . . . . . . . . . . . . . . . 12 1.2.4 HypergeometricDistribution . . . . . . . . . . . . . . . . . . . . . 13 1.2.5 PoissonDistribution . . . . . . . . . . . . . . . . . . . . . . . . . 14 1.2.6 SeriesDistribution . . . . . . . . . . . . . . . . . . . . . . . . . . 15 1.2.7 ConnectionbetweenDifferentDiscreteDistributions . . . . . . . . 16 1.3 MajorContinuousProbabilityDistributions . . . . . . . . . . . . . . . . . 18 1.3.1 UniformDistribution . . . . . . . . . . . . . . . . . . . . . . . . . 18 1.3.2 ExponentialDistribution . . . . . . . . . . . . . . . . . . . . . . . 18 1.3.3 NormalDistribution . . . . . . . . . . . . . . . . . . . . . . . . . 21 1.3.4 PropertiesoftheNormalDistributionFunction . . . . . . . . . . . 22 1.4 m-DimensionalNormalDistribution . . . . . . . . . . . . . . . . . . . . . 26 1.5 IrregularDistributions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27 1.5.1 TriangularDistribution . . . . . . . . . . . . . . . . . . . . . . . . 27 1.5.2 TrapezoidalDistribution . . . . . . . . . . . . . . . . . . . . . . . 28 1.5.3 GeneralizedTrapezoidalDistribution . . . . . . . . . . . . . . . . 29 1.5.4 Antimodal-IDistribution . . . . . . . . . . . . . . . . . . . . . . . 29 1.5.5 Antimodal-IIDistribution . . . . . . . . . . . . . . . . . . . . . . 30 1.6 BasicProbabilityDistributionsUsedinMathematicalStatistics . . . . . . . 31 1.6.1 Chi-SquareDistribution . . . . . . . . . . . . . . . . . . . . . . . 31 1.6.2 PropertiesoftheChi-SquareDistributionFunction . . . . . . . . . 32 1.6.3 Student’sDistribution . . . . . . . . . . . . . . . . . . . . . . . . 34 1.6.4 PropertiesofStudent’sDistributionFunction . . . . . . . . . . . . 35 1.6.5 Fisher’sDistribution . . . . . . . . . . . . . . . . . . . . . . . . . 38 1.6.6 PropertiesofFisher’sDistributionFunction . . . . . . . . . . . . . 39 1.6.7 ConnectionbetweenDifferentDistributions . . . . . . . . . . . . . 46 1.7 AdditionalProbabilityDistributionsUsedinMathematicalStatistics . . . . 47 1.7.1 KolmogorovDistribution . . . . . . . . . . . . . . . . . . . . . . . 47 1.7.2 Omega-SquareDistribution . . . . . . . . . . . . . . . . . . . . . 49 1.7.3 D-Distribution . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51 1.8 Samples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52 1.8.1 SamplesandStatistics . . . . . . . . . . . . . . . . . . . . . . . . 53 1.8.2 VariationalSeries . . . . . . . . . . . . . . . . . . . . . . . . . . . 54 1.9 StatisticalEstimatesofMainCharacteristicsofaRandomVariable . . . . . 55 1.9.1 SampleMomentsandEmpiricProbabilities . . . . . . . . . . . . . 55 1.9.2 HistogramandtheConceptsConnectedwithIt . . . . . . . . . . . 56 1.9.3 EmpiricDistributionFunction . . . . . . . . . . . . . . . . . . . . 58 1.10 StatisticalEstimatesofDistributionParameters . . . . . . . . . . . . . . . 59 1.10.1 MethodsofObtainingofEstimators . . . . . . . . . . . . . . . . . 59 1.10.2 EstimatorsoftheParametersofSomeSpecialProbabilityDistribu- tions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60 1.11 ConfidenceandToleranceIntervals . . . . . . . . . . . . . . . . . . . . . . 62 1.11.1 DeterminationofConfidenceIntervals . . . . . . . . . . . . . . . . 62 1.11.2 ToleranceInterval . . . . . . . . . . . . . . . . . . . . . . . . . . 64 1.11.3 Non-classical Method for Constructionof the Confidence Interval forExpectation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64 1.11.4 MainPropertiesoftheFunctionsψ (h),Ψ (H),h (α),H (α) . 65 N N N N 1.12 TestingofStatisticalHypotheses . . . . . . . . . . . . . . . . . . . . . . . 70 1.12.1 SchemeofHypothesesTesting . . . . . . . . . . . . . . . . . . . . 70 1.12.2 TestofIdentityoftheDistributionsofTwoRandomVariables . . . 72 1.12.3 StatisticsofTwoSamplesfromNormalSets. . . . . . . . . . . . . 74 1.12.4 StatisticsoftheUnitedSamplesfromNormalSets . . . . . . . . . 75 1.12.5 TestingtheNormalityofProbabilityDistribution . . . . . . . . . . 77 1.12.6 IdentificationoftheDensityofProbabilityDistribution . . . . . . . 79 1.12.7 TestingofSomeOtherHypotheses. . . . . . . . . . . . . . . . . . 82 1.13 NonparametricMethodsofStatistics . . . . . . . . . . . . . . . . . . . . . 84 1.13.1 TestofIdentityoftheDistributionsofTwoRandomVariables . . . 84 1.13.2 CriteriaofSignsandSignRanks . . . . . . . . . . . . . . . . . . . 88 1.13.3 One-FactorAnalysis . . . . . . . . . . . . . . . . . . . . . . . . . 92 1.13.4 TwoFactorAnalysis . . . . . . . . . . . . . . . . . . . . . . . . . 95 1.13.5 TwoFactorAnalysisofaVariance . . . . . . . . . . . . . . . . . . 98 1.13.6 CorrelationAnalysis . . . . . . . . . . . . . . . . . . . . . . . . . 100 1.14 IdentificationofRegressionDependencies . . . . . . . . . . . . . . . . . . 104 1.15 RestorationofSomeSpecialTypesofNonlinearFunctionalDependencies . 107 1.15.1 GeometricRegression . . . . . . . . . . . . . . . . . . . . . . . . 108 1.15.2 ExponentialRegression . . . . . . . . . . . . . . . . . . . . . . . 109 1.15.3 LogarithmicRegression . . . . . . . . . . . . . . . . . . . . . . . 109 1.15.4 Geometric-ExponentialRegression . . . . . . . . . . . . . . . . . 109 1.15.5 ExponentialRegressionwithaFreeTerm . . . . . . . . . . . . . . 110 1.15.6 GeometricRegressionwithaFreeTerm . . . . . . . . . . . . . . . 110 1.15.7 InverseExponentialRegression . . . . . . . . . . . . . . . . . . . 111 1.15.8 Linear-ExponentialRegression . . . . . . . . . . . . . . . . . . . . 111 1.15.9 Linear-ExponentialDependencewithaFreeTerm . . . . . . . . . 112 1.15.10ProductofGeometricDependencies . . . . . . . . . . . . . . . . . 112 1.15.11SumofExponentialDependencies . . . . . . . . . . . . . . . . . . 113 1.15.12SumofGeometricDependencies. . . . . . . . . . . . . . . . . . . 113 1.15.13SumofExponentialDependencieswithaFreeTerm . . . . . . . . 114 1.15.14SumofGeometricDependencieswithaFree Term . . . . . . . . . 114 1.15.15Exponential-SinusoidalRegression . . . . . . . . . . . . . . . . . 114 1.15.16Exponential-SinusoidalRegressionwithaFreeTerm . . . . . . . . 115 1.15.17PolynomialRegression . . . . . . . . . . . . . . . . . . . . . . . . 116 1.15.18Geometric-PolynomialRegression . . . . . . . . . . . . . . . . . . 116 1.15.19Exponential-PolynomialRegression . . . . . . . . . . . . . . . . . 117 1.15.20Logarithmic-PolynomialRegression . . . . . . . . . . . . . . . . . 118 1.15.21PeriodicRegression . . . . . . . . . . . . . . . . . . . . . . . . . 118 1.15.22LinearMultipleRegression. . . . . . . . . . . . . . . . . . . . . . 120 1.16 MainPropertiesofRestoredDependencies. . . . . . . . . . . . . . . . . . 121 2 SomeAdditionalProblems 135 2.1 AlgebraofIntegers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135 2.2 PerformanceofArithmeticOperationswithRationalandComplexNumbers 138 2.3 SearchofWordsandPhrasesinaDictionary . . . . . . . . . . . . . . . . . 139 A DerivationofFormulaeandProofsofTheorems 143 A.1 NumericalMethodsofLinearAlgebra . . . . . . . . . . . . . . . . . . . . 143 A.1.1 SweepMethod . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143 A.1.2 SeidelMethod . . . . . . . . . . . . . . . . . . . . . . . . . . . . 144 A.1.3 IterativeMethodsfortheDeterminationofEigenvaluesandEigen- vectors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145 A.1.4 RotationMethod . . . . . . . . . . . . . . . . . . . . . . . . . . . 146 A.1.5 BasicPropertiesoftheEigenvaluesandEigenvectorsoftheOpera- torsSˆ2andSˆ . . . . . . . . . . . . . . . . . . . . . . . . . . . . 148 z A.1.6 EigenvaluesoftheOperatorSˆ2. . . . . . . . . . . . . . . . . . . . 150 A.1.7 GeneralizedRecurrence Relationsfor theClebsch–GordanCoeffi- cients . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 150 A.1.8 SpecialValuesoftheClebsch–GordanCoefficients . . . . . . . . . 152 A.2 NumericalAnalysisofaPowerSeriesanditsPolynomials . . . . . . . . . 153 A.2.1 CalculationofanExponent. . . . . . . . . . . . . . . . . . . . . . 153 A.2.2 CalculationofaPowerFunction . . . . . . . . . . . . . . . . . . . 154 A.2.3 FundamentalTheoremofAlgebra . . . . . . . . . . . . . . . . . . 154 A.2.4 EuclideanAlgorithmfortheFindingofGCD α(z),β(z) ) . . . . 155 { } A.2.5 LagrangeTheoremDeterminingtheBoundariesofRealZeros . . . 155 A.2.6 SturmTheorem . . . . . . . . . . . . . . . . . . . . . . . . . . . . 156 A.2.7 InterpolationalFormulasforPolynomials . . . . . . . . . . . . . . 157 A.2.8 Gra¨ffe–LobatchevskyMethod . . . . . . . . . . . . . . . . . . . . 159 A.2.9 PropertiesofOrthogonalPolynomials . . . . . . . . . . . . . . . . 162 A.2.10 SumsofPartialFractions . . . . . . . . . . . . . . . . . . . . . . . 163 A.3 SolutionofNonlinearEquationsandtheDeterminationofExtremums . . . 164 A.3.1 PrincipleofContractionMappings . . . . . . . . . . . . . . . . . . 164 A.3.2 AuxiliaryTheoremsforthePrincipleofContractionMappings . . . 164 A.3.3 IterativeSequenceHavingaSquare-LawConvergence . . . . . . . 165 A.3.4 NewtonMethod . . . . . . . . . . . . . . . . . . . . . . . . . . . 166 A.3.5 NewtonMethodforAnalyticalFunctions . . . . . . . . . . . . . . 166 A.3.6 NewtonMethodforaSystemofEquations. . . . . . . . . . . . . . 166 A.4 InterpolationandApproximationofFunctions . . . . . . . . . . . . . . . . 167 A.4.1 InterpolationError . . . . . . . . . . . . . . . . . . . . . . . . . . 167 A.4.2 OptimalChoiceofInterpolationNodes . . . . . . . . . . . . . . . 168 A.4.3 InterpolationErrorforPolynomialsExpressedinTermsofDivided Differences . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 169 A.4.4 Explicit Expression for Interpolational Polynomial at Optimal ChoiceofNodes . . . . . . . . . . . . . . . . . . . . . . . . . . . 169 A.4.5 Interpolation Formulas for One-Parametric Families of Functions ofPolynomials . . . . . . . . . . . . . . . . . . . . . . . . . . . . 171 A.4.6 InterpolationoftheFunctionaxc (1 bx)d . . . . . . . . . . . . 171 · − A.4.7 CubicSplineInterpolation . . . . . . . . . . . . . . . . . . . . . . 172 A.5 NumericalDifferentiationandIntegration . . . . . . . . . . . . . . . . . . 173 A.5.1 ConnectionofDividedDifferenceswithDerivatives . . . . . . . . 173 A.5.2 QuadratureFormulasofanInterpolationalType . . . . . . . . . . . 173 A.5.3 Newton–CotesQuadratureFormulas . . . . . . . . . . . . . . . . . 174 A.5.4 QuadratureFormulasofaGaussianType . . . . . . . . . . . . . . 178 A.5.5 ModificationoftheGaussQuadratureFormula . . . . . . . . . . . 179 A.6 CalculationoftheValuesofSomeFunctions . . . . . . . . . . . . . . . . . 180 A.6.1 AsymptoticBehavioroftheInverseFunctionofxex . . . . . . . . 180 A.6.2 Determinationof the Radiusof Convergence of a Taylor Series of theFunction (s,z) . . . . . . . . . . . . . . . . . . . . . . . . . 181 P A.6.3 MainInequalitiesfortheFunction (s,z). . . . . . . . . . . . . . 182 P A.6.4 ValuesoftheFunctionΨ(x)fortheFractionalValuesofArgument 184 A.6.5 DerivationoftheBasicFunctionalEquationsforΠ(z) . . . . . . . 186 A.6.6 GaussMultiplicationFormulaforΠ(z) . . . . . . . . . . . . . . . 186 A.6.7 IntegralRepresentationforΠ(z) . . . . . . . . . . . . . . . . . . . 187 A.6.8 IntegralRepresentationforΨ(z) . . . . . . . . . . . . . . . . . . . 187 A.6.9 IntegralRepresentationforLnΠ(z) . . . . . . . . . . . . . . . . . 189 A.6.10 IntegralRepresentationsofaBeta-Function . . . . . . . . . . . . . 190 A.6.11 AsymptoticExpansionoftheFunctionΨ(z) . . . . . . . . . . . . 191 A.6.12 PropertiesoftheOperatorzd . . . . . . . . . . . . . . . . . . . . 192 z A.6.13 Coefficients of the Expansion of a Hypergeometric Function in a PowerSeries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 192 A.6.14 ConvergenceofaHypergeometricSeries . . . . . . . . . . . . . . 193 A.6.15 Transformation of Argument for the Hypergeometric Function: z 1/z . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 194 → A.6.16 TransformationofArgumentfortheKummerFunction . . . . . . . 196 A.6.17 Recurrence FormulasforHypergeometricFunctionsoneofthePa- rametersofWhichVariesbyUnit . . . . . . . . . . . . . . . . . . 196 A.6.18 MainInequalitiesforHypergeometricFunctions . . . . . . . . . . 197 A.6.19 AsymptoticExpansionofHypergeometricFunction(1) . . . . . . . 198 A.6.20 AsymptoticExpansionofHypergeometricFunction(2) . . . . . . . 199 A.6.21 AsymptoticExpansionofHypergeometricFunction(3) . . . . . . . 200 A.6.22 ApproximationoftheFunctionsJ (x)byTrigonometricalSums . 202 m A.7 NumericalMethodsforSolvingDifferentialEquations . . . . . . . . . . . 203 A.7.1 ErrorofApproximationoftheRunge–KuttaMethods . . . . . . . . 203 A.7.2 ErrorofApproximationofm-StepDifferenceMethods . . . . . . . 208 A.7.3 DerivationofFormulasfortheResidualsofaDiffusionEquation . 210 A.8 NumericalMethodsUsedinGeometry . . . . . . . . . . . . . . . . . . . . 211 A.8.1 ExpressionoftheMatrixAinTermsoftheRotationAngleandthe AxisofRotation . . . . . . . . . . . . . . . . . . . . . . . . . . . 211 A.9 NumericalMethodsofProbabilityTheoryandMathematicalStatistics . . . 212 A.9.1 Asymptotic Expansionsfor the Function of Probabilitiesof Bino- mialDistribution . . . . . . . . . . . . . . . . . . . . . . . . . . . 212 A.9.2 AsymptoticExpansionofFisher’sDistributionFunction . . . . . . 213 A.9.3 RemaindersoftheExpansionsofaKolmogorovDistributionFunc- tionUsedforSmallValuesoftheArgument . . . . . . . . . . . . . 215 A.9.4 NonclassicalMethodfor theConstructionoftheConfidenceInter- valfortheExpectationofaRandomVariable . . . . . . . . . . . . 216 A.9.5 SpecialValuesoftheFunctionψ (h) . . . . . . . . . . . . . . . . 217 N A.9.6 Limitofh (α) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 218 N A.10 SomeAdditionalProblems . . . . . . . . . . . . . . . . . . . . . . . . . . 219 A.10.1 DecompositionofNaturalNumbersonPrimeFactors . . . . . . . . 219 A.10.2 EuclideanAlgorithmforIntegers . . . . . . . . . . . . . . . . . . 220 A.10.3 SolvingofLinearEquationsinIntegers . . . . . . . . . . . . . . . 220 B ProgramRealizationofFormulasandAlgorithms 223 B.1 NumericalMethodsofLinearAlgebra . . . . . . . . . . . . . . . . . . . . 223 B.1.1 ProblemswhichdonotUseIterativeAlgorithms . . . . . . . . . . 223 B.1.2 IterativeMethodsforSolutionofLinearEquations . . . . . . . . . 225 B.1.3 CalculationoftheEigenvaluesandEigenvectorsofMatrices . . . . 227 B.1.4 AdditionalProblemsofLinearAlgebra . . . . . . . . . . . . . . . 228 B.2 NumericalAnalysisofaPowerSeriesanditsPolynomials . . . . . . . . . 228 B.2.1 ActionsOveraPowerSeries . . . . . . . . . . . . . . . . . . . . . 228 B.2.2 ActionswithPolynomials . . . . . . . . . . . . . . . . . . . . . . 231 B.2.3 CalculationofSomeSpecialPolynomialsandTheirCoefficients . . 235 B.3 SolutionofNonlinearEquationsandDeterminationofExtremums . . . . . 237 B.4 InterpolationandApproximationofFunctions . . . . . . . . . . . . . . . . 239 B.4.1 Spline-Interpolation . . . . . . . . . . . . . . . . . . . . . . . . . 239 B.4.2 BaseClassesfortheApproximationofFunctions . . . . . . . . . . 241 B.4.3 InterpolationoftheNonlinearFunctionsofaCertainClass . . . . . 246 B.4.4 DeterminationoftheBoundariesfortheSearchoftheApproxima- tionParameters fortheNonlinearFunctionsofaCertainClass . . . 249 B.4.5 RestorationofSomeSpecialTypesofFunctionalDependencies . . 250 B.4.6 InterpolationandApproximationofFunctionsbyMeans ofPolynomials . . . . . . . . . . . . . . . . . . . . . . . . . . . . 256 B.4.7 RestorationofPeriodicDependence . . . . . . . . . . . . . . . . . 259 B.4.8 RestorationofDependencethatisLinearwithRespecttoParameters261 B.5 NumericalIntegrationofFunctions . . . . . . . . . . . . . . . . . . . . . . 262 B.6 CalculationoftheValuesofSomeFunctions . . . . . . . . . . . . . . . . . 265 B.6.1 Calculationof theValuesof ElementaryTranscendentalFunctions andGamma-Functions . . . . . . . . . . . . . . . . . . . . . . . . 265 B.6.2 Calculation of the Values of the Hypergeometric and Cylindrical FunctionsofRealVariablesbyElementaryMethods . . . . . . . . 267 B.7 NumericalSolutionofDifferentialEquations . . . . . . . . . . . . . . . . 270 B.7.1 Numerical Solution of Ordinary Differential Equations by the Runge–KuttaMethod . . . . . . . . . . . . . . . . . . . . . . . . . 270 B.7.2 Numerical Solving of One-Dimensional, Two-Dimensional, and Three-DimensionalBoundaryProblems . . . . . . . . . . . . . . . 275 B.7.3 Numerical Solving of One-Dimensional, Two-Dimensional, and Three-Dimensional Diffusion Equations and Wave Equations by MeansofExplicitSchemes . . . . . . . . . . . . . . . . . . . . . . 283 B.7.4 Numerical Solving of One-Dimensional, Two-Dimensional and Three-Dimensional Diffusion Equations and Wave Equations by MeansofImplicitSchemes . . . . . . . . . . . . . . . . . . . . . . 289 B.8 NumericalMethodsUsedinGeometry . . . . . . . . . . . . . . . . . . . . 291 B.8.1 Three-DimensionalRotationMatrices . . . . . . . . . . . . . . . . 291 B.8.2 DescriptionofPlaneCurvesbySplines . . . . . . . . . . . . . . . 293 B.9 NumericalMethodsofProbabilityTheoryandMathematicalStatistics . . . 295 B.9.1 MethodsofCombinatorics . . . . . . . . . . . . . . . . . . . . . . 295 B.9.2 Functions of Statistical Distributions, Density Functions, and Quantiles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 298 B.9.3 StatisticalEstimatesofParameters . . . . . . . . . . . . . . . . . . 301 B.9.4 TestingofStatisticalHypotheses . . . . . . . . . . . . . . . . . . . 303 B.9.5 NonparametricMethodsofStatistics. . . . . . . . . . . . . . . . . 306 B.10 SomeAdditionalProblems . . . . . . . . . . . . . . . . . . . . . . . . . . 316 B.10.1 Performance of Arithmeticaland Algebraic OperationsOver Inte- gers,RationalandComplexNumbers . . . . . . . . . . . . . . . . 316 B.10.2 SearchofWordsandPhrasesinaDictionary . . . . . . . . . . . . 317 C UsedDesignations 319 C.1 ObjectsofMathematicalLogicandGeneralAlgebra . . . . . . . . . . . . 319 C.2 ObjectsofLinearAlgebraandFunctionalAnalysis . . . . . . . . . . . . . 323 C.3 OperationsofMathematicalAnalysis . . . . . . . . . . . . . . . . . . . . 325 C.4 DesignationsofMathematicalFunctionsandConstants . . . . . . . . . . . 327 C.5 GeometricalObjects . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 330 C.6 DesignationsofProbabilityTheoryandMathematicalStatistics. . . . . . . 335 References 337 About the Authors 355 Index 357 Figures 1.1 Plotsofthegeometricdependence . . . . . . . . . . . . . . . . . . . . . . 121 1.2 Plotsofexponents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122 1.3 Plotsoflogarithmicfunctions. . . . . . . . . . . . . . . . . . . . . . . . . 122 1.4 Plotsoftheproductofgeometricandexponentialdependencies. . . . . . . 124 1.5 Plotsofinverse-exponentialdependence . . . . . . . . . . . . . . . . . . . 125 1.6 Plotsoftheproductoflinearandexponentialdependencies . . . . . . . . . 126 1.7 Plotsofproductofgeometricdependencies . . . . . . . . . . . . . . . . . 127 1.8 Plotsofsumofexponents . . . . . . . . . . . . . . . . . . . . . . . . . . . 129 1.9 Plotsofsumofgeometricdependencies . . . . . . . . . . . . . . . . . . . 131 1.10 Plotsofexponential-sinusoidaldependence . . . . . . . . . . . . . . . . . 132 A.1 CriticalareasD ,D , andthehypothesis-acceptanceregionD ;tanϕ = 1 2 0 1 h/(1+h);tanϕ = H/(1+H). . . . . . . . . . . . . . . . . . . . . . . 217 2

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.