ebook img

Computer Vision: Algorithms and Applications PDF

833 Pages·2010·27.08 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Computer Vision: Algorithms and Applications

Texts in Computer Science Editors DavidGries FredB.Schneider Forfurthervolumes: www.springer.com/series/3191 Richard Szeliski Computer Vision Algorithms and Applications 123 Dr. Richard Szeliski Microsoft Research One Microsoft Way 98052-6399 Redmond Washington USA [email protected] SeriesEditors DavidGries FredB.Schneider DepartmentofComputerScience DepartmentofComputerScience UpsonHall UpsonHall CornellUniversity CornellUniversity Ithaca,NY14853-7501,USA Ithaca,NY14853-7501,USA ISSN 1868-0941 e-ISSN 1868-095X ISBN 978-1-84882-934-3 e-ISBN 978-1-84882-935-0 DOI 10.1007/978-1-84882-935-0 Springer London Dordrecht Heidelberg New York BritishLibraryCataloguinginPublicationData AcataloguerecordforthisbookisavailablefromtheBritishLibrary LibraryofCongressControlNumber:2010936817 © Springer-VerlagLondonLimited2011 Apart from any fair dealing for the purposes of research or private study, or criticism or review, as permittedundertheCopyright,DesignsandPatentsAct1988,thispublicationmayonlybereproduced, stored or transmitted, in any form or by any means, with the prior permission in writing of the publishers,orinthecaseofreprographicreproductioninaccordancewiththetermsoflicensesissuedby theCopyrightLicensingAgency.Enquiriesconcerningreproductionoutsidethosetermsshouldbesent tothepublishers. Theuseofregisterednames,trademarks,etc.,inthispublicationdoesnotimply,evenintheabsenceofa specificstatement,thatsuchnamesareexemptfromtherelevantlawsandregulationsandthereforefree forgeneraluse. Thepublishermakesnorepresentation,expressorimplied,withregardtotheaccuracyoftheinformation containedinthisbookandcannotacceptanylegalresponsibilityorliabilityforanyerrorsoromissions thatmaybemade. Printedonacid-freepaper SpringerispartofSpringerScience+BusinessMedia(www.springer.com) Thisbookisdedicatedtomyparents, ZdzisławandJadwiga, andmyfamily, Lyn,Anne,andStephen. 1 Introduction 1 Whatiscomputervision? Abriefhistory • • Bookoverview Samplesyllabus Notation • • n^ 2 Imageformation 27 Geometricprimitivesandtransformations • Photometricimageformation • Thedigitalcamera 3 Imageprocessing 87 Pointoperators Linearfiltering • • Moreneighborhoodoperators Fouriertransforms • • Pyramidsandwavelets Geometrictransformations • • Globaloptimization 4 Featuredetectionandmatching 181 Pointsandpatches • Edges Lines • 5 Segmentation 235 Activecontours Splitandmerge • • Meanshiftandmodefinding Normalizedcuts • • Graphcutsandenergy-basedmethods 6 Feature-basedalignment 273 2Dand3Dfeature-basedalignment • Poseestimation Geometricintrinsiccali•bration 7 Structurefrommotion 303 Triangulation Two-framestructurefrommotion • • Factorization Bundleadjustment • • Constrainedstructureandmotion 8 Densemotionestimation 335 Translationalalignment Parametricmotion • • Spline-basedmotion Opticalflow • • Layeredmotion 9 Imagestitching 375 Motionmodels Globalalignment • • Compositing 10 Computationalphotography 409 Photometriccalibration Highdynamicrangeimaging • • Super-resolutionandblurremoval • Imagemattingandcompositing • Textureanalysisandsynthesis 11 Stereocorrespondence 467 Epipolargeometry Sparsecorrespondence • • Densecorrespondence Localmethods • • Globaloptimization Multi-viewstereo • 12 3Dreconstruction 505 ShapefromX Activerangefinding • • Surfacerepresentations Point-basedrepresentations • • Volumetricrepresentations Model-basedreconstruction • • Recoveringtexturemapsandalbedos 13 Image-basedrendering 543 Viewinterpolation Layereddepthimages • • LightfieldsandLumigraphs Environmentmattes • • Video-basedrendering 14 Recognition 575 Objectdetection Facerecognition • • Instancerecognition Categoryrecognition • • Contextandsceneunderstanding • Recognitiondatabasesandtestsets Preface Theseedsforthisbookwerefirstplantedin2001whenSteveSeitzattheUniversityofWash- ingtoninvitedmetoco-teachacoursecalled“ComputerVisionforComputerGraphics”. At thattime,computervisiontechniqueswereincreasinglybeingusedincomputergraphicsto createimage-basedmodelsofreal-worldobjects,tocreatevisualeffects,andtomergereal- world imagery using computational photography techniques. Our decision to focus on the applicationsofcomputervisiontofunproblemssuchasimagestitchingandphoto-based3D modelingfrompersonalphotosseemedtoresonatewellwithourstudents. Sincethattime,asimilarsyllabusandproject-orientedcoursestructurehasbeenusedto teachgeneralcomputervisioncoursesbothattheUniversityofWashingtonandatStanford. (ThelatterwasacourseIco-taughtwithDavidFleetin2003.) Similarcurriculahavebeen adoptedatanumberofotheruniversitiesandalsoincorporatedintomorespecializedcourses oncomputationalphotography.(Forideasonhowtousethisbookinyourowncourse,please seeTable1.1inSection1.4.) Thisbookalsoreflectsmy20years’experiencedoingcomputervisionresearchincorpo- rateresearchlabs,mostlyatDigitalEquipmentCorporation’sCambridgeResearchLaband atMicrosoftResearch. Inpursuingmywork, Ihavemostlyfocusedonproblemsandsolu- tiontechniques(algorithms)thathavepracticalreal-worldapplicationsandthatworkwellin practice. Thus,thisbookhasmoreemphasisonbasictechniquesthatworkunderreal-world conditionsandlessonmoreesotericmathematicsthathasintrinsicelegancebutlesspractical applicability. Thisbookissuitableforteachingasenior-levelundergraduatecourseincomputervision to students in both computer science and electrical engineering. I prefer students to have either an image processing or a computer graphics course as a prerequisite so that they can spendlesstimelearninggeneralbackgroundmathematicsandmoretimestudyingcomputer visiontechniques. Thebookisalsosuitableforteachinggraduate-levelcoursesincomputer vision(bydelvingintothemoredemandingapplicationandalgorithmicareas)andasagen- eralreferencetofundamentaltechniquesandtherecentresearchliterature.Tothisend,Ihave attemptedwhereverpossibletoatleastcitethenewestresearchineachsub-field,evenifthe technicaldetailsaretoocomplextocoverinthebookitself. Inteachingourcourses,wehavefounditusefulforthestudentstoattemptanumberof smallimplementationprojects,whichoftenbuildononeanother,inordertogetthemusedto workingwithreal-worldimagesandthechallengesthatthesepresent. Thestudentsarethen askedtochooseanindividualtopicforeachoftheirsmall-group,finalprojects. (Sometimes these projects even turn into conference papers!) The exercises at the end of each chapter contain numerous suggestions for smaller mid-term projects, as well as more open-ended

Description:
Humans perceive the three-dimensional structure of the world with apparent ease. However, despite all of the recent advances in computer vision research, the dream of having a computer interpret an image at the same level as a two-year old remains elusive. Why is computer vision such a challenging p
See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.