ebook img

Computer Aided Simulation and Process Design of a Hydrogenation Plant Using Aspen HYSYS ... PDF

158 Pages·2009·3.28 MB·English
by  
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Computer Aided Simulation and Process Design of a Hydrogenation Plant Using Aspen HYSYS ...

Computer Aided Simulation and Process Design of a Hydrogenation Plant Using Aspen HYSYS 2006 By Mohammad Hossein Ordouei A thesis presented to the University of Waterloo in fulfillment of the thesis requirement for the degree of Master of Applied Science in Chemical Engineering Waterloo, Ontario, Canada, 2009 © Mohammad Hossein Ordouei 2009 Author’s Declaration I hereby declare that I am the sole author of this thesis. This is a true copy of the thesis, including any required final revisions, as accepted by my examiners. I understand that my thesis may be made electronically available to the public. ii ABSTRACT Nowadays, computers are extensively used in engineering modeling and simulation fields in many different ways, one of which is in chemical engineering. Simulation and modeling of a chemical process plant and the sizing of the equipment with the assistance of computers, is of special interests to process engineers and investors. This is due to the ability of high speed computers, which make millions of mathematical calculations in less than a second associated with the new powerful software that make the engineering calculations more reliable and precise by making very fast iterations in thermodynamics, heat and mass transfer calculations. This combination of new technological hardware and developed software enables process engineers to deal with simulation, design, optimization, control, analysis etc. of complex plants, e.g. refinery and petrochemical plants, reliably and satisfactorily. The main chemical process simulators used for static and dynamic simulations are ASPEN PLUS, ASPEN HYSYS, PRO II, and CHEMCAD. The basic design concepts of all simulators are the same and one can fairly use all simulators if one is expert in any of them. Hydrogenation process is an example of the complex plants, to which a special attention is made by process designers and manufacturers. This process is used for upgrading of hydrocarbon feeds containing sulfur, nitrogen and/or other unsaturated hydrocarbon compounds. In oil and gas refineries, the product of steam cracking cuts, which is valuable, may be contaminated by these unwanted components and thus there is a need to remove those pollutants in downstream of the process. Hydrogenation is also used to increase the octane number of gasoline and gas oil. Sulfur, nitrogen and oxygen compounds and other unsaturated hydrocarbons are undesired components causing environmental issues, production of by-products, poisoning the catalysts and corrosion of the equipment. The unsaturated C=C double bonds in dioleffinic and alkenyl aromatics compounds, on the other hand, cause unwanted polymerization reactions due to having the functionality equal to or greater than 2. Hydrogenation process of the undesired components will remove those impurities and/or increase the octane number of aforementioned hydrocarbons. This process is sometimes referred to as “hydrotreating”; however, “upgrader” is a general word and is, of course, of more interest. iii In this thesis, a hydrogenation process plant was designed on the basis of the chemistry of hydrocarbons, hydrogenation reaction mechanism, detailed study of thermodynamics and kinetics and then a steady-state simulation and design of the process is carried out by ASPEN HYSYS 2006 followed by design evaluation and some modifications and conclusions. Hydrogenation reaction has a complicated mechanism. It has been subjected to hot and controversial debates over decades. Many kinetic data are available, which contradict one another. Among them, some of the experimental researches utilize good assumptions in order to simplify the mechanism so that a “Kinetic Reaction” modeling can be employed. This thesis takes the benefit of such research works and applies some conditions to approve the validity of those assumptions. Meanwhile, some other papers from reputed companies such as IFP are used in order to make sure that the present simulation and design is a practical one and applicable in real world. On the basis of this detailed study of reaction modeling and kinetic data, a hydrogenation plant was designed to produce and purify over 98 million kilograms of different products; e.g. Benzene, Toluene, Iso-octane etc. with fairly high purity. iv Acknowledgements The author wishes to acknowledge and thank his supervisors, Dr. Ali Elkamel and Dr. Mazda Biglari, for their guidance and support throughout the thesis. The author also wishes to thank the readers of my thesis, Dr. Leonardo Simon and Dr. Luis Ricardez for their valuable advice on this research. And finally, thanks to my loving mother, my family and friends for their inspiration and encouragement during the working on my thesis. v Dedication I would like to dedicate the present work to my parents and my sisters, who have been supporting me in all steps of my life. vi Table of Contents LIST OF FIGURES ................................................................................................................................... X LIST OF TABLES ................................................................................................................................. XIV CHAPTER 1: INTRODUCTION ............................................................................................................ 1 1.1 The advantages of computer simulators ......................................................................................................... 1 1.2 Process simulators .......................................................................................................................................... 1 1.3 Hydrocarbons characteristics .......................................................................................................................... 3 1.4 The objectives of hydrogenation reactions in industries ................................................................................. 6 1.5 Hydrogenation Process ................................................................................................................................... 7 1.6 Designing levels and modeling steps ............................................................................................................... 9 1.7 The levels of process simulation ................................................................................................................... 11 1.8 The objective of the thesis ............................................................................................................................ 11 1.9 Applications of the thesis.............................................................................................................................. 13 1.10 Organization of this work............................................................................................................................ 14 CHAPTER 2: LITERATURE REVIEW .............................................................................................. 15 2.1 Chemistry of hydrocarbons ........................................................................................................................... 15 A. Carbon:............................................................................................................................................................... 15 B. Sulfur: ................................................................................................................................................................. 16 C. Nitrogen: ............................................................................................................................................................ 17 2.2 Reactions, kinetics and thermodynamics of hydrogenation .......................................................................... 17 A. Desulfurization .............................................................................................................................................. 17 B. Denitrification ................................................................................................................................................ 18 C. Hydrogenation of olefinic, diolefinic and alkenyl aromatics ......................................................................... 18 2.3 The Le Chatelier’s principle ........................................................................................................................... 20 2.4 Catalyst selection .......................................................................................................................................... 22 2.5 Typical hydrogenation plant ......................................................................................................................... 23 2.6 Review on simulation on hydrogenation plants ............................................................................................ 26 vii CHAPTER 3: MODELING OF A HYDROGENATION PLANT ..................................................... 28 3.1 Starting the modeling ................................................................................................................................... 28 3.2 Feed streams ................................................................................................................................................ 28 3.3 Reaction modeling by HYSYS ........................................................................................................................ 30 3.4 Reaction section of hydrogenation plant ...................................................................................................... 31 A. The reaction rate model: ................................................................................................................................... 31 B. Chemical reactions in PFR: ................................................................................................................................. 32 C. Catalyst specifications ........................................................................................................................................ 32 D. Reaction parameters ......................................................................................................................................... 33 E. Reactor modeling ............................................................................................................................................... 34 F. Tubular reactor (PFR) sizing ................................................................................................................................ 36 G. PFR modeling results and analyses .................................................................................................................... 38 3.5 Cooling and separation section of hydrogenation plant ................................................................................ 44 A. The modeling of cooling heat exchangers ......................................................................................................... 44 B. Two-phase separator modeling ......................................................................................................................... 49 C. Sizing of vertical drum separator and analyses .................................................................................................. 51 3.6 Purification section ....................................................................................................................................... 57 A. Mass transfer operation .................................................................................................................................... 57 B. Modeling of distillation columns........................................................................................................................ 58 C. Comparison with other possible arrangement .................................................................................................. 62 3.7 Annual capacity ............................................................................................................................................ 64 CHAPTER 4: MODIFICATIONS ........................................................................................................ 67 4.1 Reaction section ........................................................................................................................................... 67 A. Re-sizing the tubular reactors ............................................................................................................................ 68 B. Comparison the new design with old design ..................................................................................................... 70 4.2 Cooling and phase separation section ........................................................................................................... 71 A. New arrangement .............................................................................................................................................. 72 B. Comparison the new arrangement with the old one ......................................................................................... 74 4.3 Purification section ....................................................................................................................................... 75 A. New arrangement .............................................................................................................................................. 75 B. Column design properties .................................................................................................................................. 78 C. The result of new arrangements ........................................................................................................................ 80 D. Comparison of two arrangements ..................................................................................................................... 81 CHAPTER 5: PROCESS DESCRIPTION .......................................................................................... 83 5.1 General process descriptions ........................................................................................................................ 83 viii 5.2 Energy streams ............................................................................................................................................. 85 CHAPTER 6: CONCLUSIONS AND OTHER APPROACH ............................................................ 88 6.1 Conclusions ................................................................................................................................................... 88 6.2 Other approaches: ........................................................................................................................................ 91 REFERENCES ........................................................................................................................................ 92 Appendices ......................................................................................................................................................... 96 APPENDIX A: The mechanism of ethylene hydrogenation .................................................................................. 96 APPENDIX B: Catalyst Effect, Catalyst Selection and Related Kinetic Data .......................................................... 97 APPENDIX C: Simulation and Optimization by ASPEN HYSYS 2006 .....................................................................107 APPENDIX D: Modeling and simulation of a plug flow reactor for hydrogenation reaction ...............................137 ix List of Figures Figure 1.1. Simplified flow chart of an “upgrader unit”………………………………………………6 Figure 2.1. Energy diagram for the hydrogenation of benzene………………………………………20 Figure 2.2. Effect of hydrogen purity and pressure on benzene hydrogenation ……………………..21 Figure 2.3. Flow diagram of an Exxon hydrotreating unit……………………………………………23 Figure 2.4. The block flow diagram of an upgrader gas hydrotreater…………………….…………..25 Figure 2.5. Block flow diagram of the selective hydrogenation of pyrolysis gasoline………….…....25 Figure 3.1. The Block flow diagram (BDF) of the present hydrogenation process……………….….28 Figure 3.2. The mixed stream resulted from HC and H feed streams….…………………………….35 2 Figure 3.3. The feed streams and PFR arrangement for the Hydrogenation plan…………………….37 Figure 3.4. Multi-bed catalytic reactors…………….………………………………………………...38 Figure 3.5. The 1st Hydrogenation Reactor outlet stream……………………………………….……39 Figure 3.6. The two-phase outlet stream from the 2nd Hydrogenation Reactor………………………40 Figure 3.7. Reaction Overall Information page of the 1st Hydrogenation Reactor…………………...41 Figure 3.8. Sizing the 1st and the 2nd Hydrogenation Reactors………………………………….……42 Figure 3.9. Changes in the Molar Flow rate of Iso-octane and Ethyl Benzene……………………...43 Figure 3.10. Changes in the Molar Flow rate of n-Butane and Iso-Butane……………………….….44 Figure 3.11. Duty of the First Step Pre-Cooler…………………………………………………….…45 Figure 3.12. Design parameters and the Duty of the air-cooler………………………………………47 Figure 3.13. Duty of the After Cooler………………………………………………………………...48 Figure 3.14. Forces on liquid in gas stream …….......…………………………………………….….49 Figure 3.15. Designing the gas velocity factor for vertical gas-liquid drum .………………………..50 Figure 3.16. Key dimensions for knock-out drum ………………………...…………………………51 Figure 3.17. The properties of the stream “To FirstSep”….………………………………...……..…51 Figure 3.18. Modeling and the arrangement of a vertical drum ……………………………………..53 Figure 3.19. Compositions and flow rates of gas outlet from the FirstSep drum ……………………54 x

Description:
Hydrogenation Plant Using Aspen HYSYS 2006. By process simulators used for static and dynamic simulations are ASPEN HYSYS 2006 followed by design evaluation and some modifications and .. 3.1 Starting the modeling .
See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.