Computer-Aided Power System Analysis Ramasamy Natarajan Practical Power Associates Raleigh, North Carolina, U.S.A. MARCEL H MARCEL DEKKER, INC. NEW YORK • BASEL D E K K E R ISBN: 0-8247-0699-4 This book is printed on acid-free paper. Headquarters Marcel Dekker, Inc. 270 Madison Avenue, New York, NY ! 0016 tel: 212-696-9000; fax: 212-685-4540 Eastern Hemisphere Distribution Marcel Dekker AG Hutgasse 4, Postfach 812, CH-4001 Basel, Switzerland tel: 41-61-261-8482; fax: 41-61-261-8896 World Wide Web http://www.dekker.com The publisher offers discounts on this book when ordered in bulk quantities. For more infor- mation, write to Special Sales/Professional Marketing at the headquarters address above. Copyright © 2002 by Marcel Dekker, Inc. All Rights Reserved. Neither this book nor any part may be reproduced or transmitted in any form or by any means, electronic or mechanical, including photocopying, microfilming, and recording, or by any information storage and retrieval system, without permission in writing from the publisher. Current printing (last digit): 10 9 8 7 6 5 4 3 21 PRINTED IN THE UNITED STATES OF AMERICA Copyright © 2002 by Marcel Dekker, Inc. All Rights Reserved. POWER ENGINEERING Series Editors H. Lee Willis ABB Electric Systems Technology Institute Raleigh, North Carolina Anthony F. Sleva Sleva Associates Allentown, Pennsylvania Mohammad Shahidehpour Illinois Institute of Technology Chicago, Illinois 1. Power Distribution Planning Reference Book, H. Lee Willis 2. Transmission Network Protection: Theory and Practice, Y. G. Paithan- kar 3. Electrical Insulation in Power Systems, N. H. Malik, A. A. AI-Arainy, and M. I. Qureshi 4. Electrical Power Equipment Maintenance and Testing, Paul Gill 5. Protective Relaying: Principles and Applications, Second Edition, J. Lewis Blackburn 6. Understanding Electric Utilities and De-Regulation, Lorrin Philipson and H. Lee Willis 7. Electrical Power Cable Engineering, William A. Thue 8. Electric Systems, Dynamics, and Stability with Artificial Intelligence Applications, James A. Momoh and Mohamed E. EI-Hawary 9. Insulation Coordination for Power Systems, Andrew R. Hileman 10. Distributed Power Generation: Planning and Evaluation, H. Lee Willis and Walter G. Scott 11. Electric Power System Applications of Optimization, James A. Momoh 12. Aging Power Delivery Infrastructures, H. Lee Willis, Gregory V. Welch, and Randall R. Schrieber 13. Restructured Electrical Power Systems: Operation, Trading, and Vola- tility, Mohammad Shahidehpour and Muwaffaq Alomoush 14. Electric Power Distribution Reliability, Richard E. Brown 15. Computer-Aided Power System Analysis, Ramasamy Natarajan 16. Power System Analysis: Short-Circuit Load Flow and Harmonics, J. C. Das 17. Power Transformers: Principles and Applications, John J. Winders, Jr. Copyright © 2002 by Marcel Dekker, Inc. All Rights Reserved. ADDITIONAL VOLUMES IN PREPARATION Spatial Electric Load Forecasting: Second Edition, Revised and Expanded, H. Lee Willis Copyright © 2002 by Marcel Dekker, Inc. All Rights Reserved. This book is dedicated to the memory of my wife, Karpagam Natarajan Copyright © 2002 by Marcel Dekker, Inc. All Rights Reserved. Series Introduction Power engineering is the oldest and most traditional of the various areas within electrical engineering, yet no other facet of modern technology is currently experiencing a greater transformation or seeing more attention and interest from the public and government. Power system engineers face more challenges than ever in making their systems not only work well, but fit within the constraints and rules set down by deregulation rules, and meet the needs of utility business practices and consumer demand. Without exaggeration, one can say that modern power engineers could not possibly meet these challenges without the aid of computerized analysis and modeling tools, which permit them to explore alternatives, evaluate designs, and diagnose and hone performance and cost with precision. Therefore, one of the reasons I am particularly delighted to see this latest addition to Marcel Dekker's Power Engineering Series is its timeliness in covering this very subject in a straightforward and accessible manner. Dr. Natarajan's Computer-Aided Power Systems Analysis provides a very complete coverage of basic computer analysis techniques for power systems. Its linear organization makes it particularly suitable as a reference for practicing utility and industrial power engineers involved in power flow, short-circuit, and equipment capability engineering of transmission and distribution systems. In addition, it provides sound treatment of numerous practical problems involved in day-to-day power engineering, including flicker and harmonic analysis, insulation coordination, grounding, EMF, relay, and a host of other computerized study applications. Copyright © 2002 by Marcel Dekker, Inc. All Rights Reserved. The second reason for my satisfaction in seeing this book added to the Power Engineering Series is that I count the author among my good friends, and enjoyed working with him from 1997 to 2001 when he was at ABB's Electric Systems Technology Institute. Therefore, I am particularly proud to include Computer- Aided Power System Analysis in this important group of books. Like all the books in this series, Raj Natarajan's book provides modern power technology in a context of proven, practical application; useful as a reference book as well as for self-study and advanced classroom use. The series includes books covering the entire field of power engineering, in all of its specialties and sub-genres, each aimed at providing practicing power engineers with the knowledge and techniques they need to meet the electric industry's challenges in the 21st century. H. Lee Willis Copyright © 2002 by Marcel Dekker, Inc. All Rights Reserved. Preface Power system planning, design, and operations require careful analysis in order to evaluate the overall performance, safety, efficiency, reliability, and economics. Such analysis helps to identify the potential system deficiencies of a proposed project. In an existing plant, the operating limits and possible increase in loading levels can be evaluated. In the equipment failure analysis, the cause of the failure and mitigating measures to improve the system performance can be studied. The modern interconnected power systems are complex, with several thousand buses and components. Therefore, manual calculation of the performance indices is time consuming. The computational efforts are very much simplified due to the availability of efficient programs and powerful personal computers. The introduction of personal computers with graphic capabilities has reduced computational costs. Also, the available software for various studies is becoming better and the cost is coming down. However, the results produced by the programs are sophisticated and require careful analysis. Several power system studies are performed to evaluate the efficient operation of the power delivery. Some of the important studies are impedance modeling, load flow, short circuit, transient stability, motor starting, power factor correction, harmonic analysis, flicker analysis, insulation coordination, cable ampacity, grounding grid, effect of lightning surge, EMF analysis, data acquisition systems, and protection coordination. Copyright © 2002 by Marcel Dekker, Inc. All Rights Reserved. In this book, the nature of the study, a brief theory involved, practical examples, criteria for the evaluation, data required for the analysis, and the output data are described in a step-by-step manner for easy understanding. I was involved in the above types of studies over several years for industrial power systems and utilities. It is hoped that this book will be a useful tool for power system engineers in industry, utilities, and consulting, and those involved in the evaluation of practical power systems. I wish to thank software manufacturers for providing me permission to use the copyrighted material in this book, including the EMTP program from Dr. H. W. Dommel, University of British Columbia, Canada; PSS/E program from Power Technologies Inc., Schenectady, New York; Power Tools for Windows from SKM System Analysis Inc., Manhattan Beach, California; SuperHarm and the TOP-the output processor from the Electrotek Concepts, Knoxville, Tennessee; the EMTP program from the DCG/EPRI version, User Support & Maintenance Center, One Networks Inc, Canada; the Integrated Grounding System Design Program from Dr. Sakis Meliopoulos, Georgia Tech, Atlanta; and the Corona and Field Effects program from Bonneville Power Administration, Portland, Oregon. Also, the reprint permission granted by various publishers and organizations is greatly appreciated. Finally, I wish to thank many great people who discussed the technical problems presented in this book over the past several years. These include Dr. Sakis Meliopoulos of Georgia Tech; Dr. T. Kneschke and Mr. K. Agarwal of LTK Engineering Services; Mr. Rory Dwyer of ABB Power T&D Company; Dr. R. Ramanathan of National Systems & Research Company; Mr. E. H. Camm of S&C Electric Company; Mr. T. Laskowski and Mr. J. Wills of PTI; Mr. Lon Lindell of SKM System Analysis; Dr. C. Croskey, Dr. R. V. Ramani, Dr. C. J. Bise, Mr. R. Frantz and Dr. J. N. Tomlinson of Penn State; Dr. P. K. Sen, University of Colorado; Dr. M. K. Pal, a Consultant from New Jersey; Dr. A. Chaudhary of Cooper Power Systems; Dr. J. A. Martinez of Universiat Politechnica De Catalunya, Spain; Dr. A. F. Imece of PowerServ and many more. Finally, sincere thanks are due to Rita Lazazzaro and Barbara Mathieu of Marcel Dekker, Inc., for their help in the preparation of this book. Ramasamy Natarajan Copyright © 2002 by Marcel Dekker, Inc. All Rights Reserved.