ebook img

Computational Techniques for Intelligence Analysis: A Cognitive Approach PDF

185 Pages·2023·3.765 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Computational Techniques for Intelligence Analysis: A Cognitive Approach

Vincenzo Loia Francesco Orciuoli Angelo Gaeta Computational Techniques for Intelligence Analysis A Cognitive Approach Computational Techniques for Intelligence Analysis · · Vincenzo Loia Francesco Orciuoli Angelo Gaeta Computational Techniques for Intelligence Analysis A Cognitive Approach VincenzoLoia FrancescoOrciuoli DipartimentodiScienze DipartimentodiScienze Aziendali—Management&Innovation Aziendali—Management&Innovation Systems(DISA-MIS) Systems(DISA-MIS) UniversitàdegliStudidiSalerno UniversitàdegliStudidiSalerno Fisciano,Salerno,Italy Fisciano,Salerno,Italy AngeloGaeta DipartimentodiScienze Aziendali—Management&Innovation Systems(DISA-MIS) UniversitàdegliStudidiSalerno Fisciano,Salerno,Italy ISBN 978-3-031-20850-8 ISBN 978-3-031-20851-5 (eBook) https://doi.org/10.1007/978-3-031-20851-5 ©TheEditor(s)(ifapplicable)andTheAuthor(s),underexclusivelicensetoSpringerNature SwitzerlandAG2023 Thisworkissubjecttocopyright.AllrightsaresolelyandexclusivelylicensedbythePublisher,whether thewholeorpartofthematerialisconcerned,specificallytherightsoftranslation,reprinting,reuse ofillustrations,recitation,broadcasting,reproductiononmicrofilmsorinanyotherphysicalway,and transmissionorinformationstorageandretrieval,electronicadaptation,computersoftware,orbysimilar ordissimilarmethodologynowknownorhereafterdeveloped. Theuseofgeneraldescriptivenames,registerednames,trademarks,servicemarks,etc.inthispublication doesnotimply,evenintheabsenceofaspecificstatement,thatsuchnamesareexemptfromtherelevant protectivelawsandregulationsandthereforefreeforgeneraluse. Thepublisher,theauthors,andtheeditorsaresafetoassumethattheadviceandinformationinthisbook arebelievedtobetrueandaccurateatthedateofpublication.Neitherthepublishernortheauthorsor theeditorsgiveawarranty,expressedorimplied,withrespecttothematerialcontainedhereinorforany errorsoromissionsthatmayhavebeenmade.Thepublisherremainsneutralwithregardtojurisdictional claimsinpublishedmapsandinstitutionalaffiliations. ThisSpringerimprintispublishedbytheregisteredcompanySpringerNatureSwitzerlandAG Theregisteredcompanyaddressis:Gewerbestrasse11,6330Cham,Switzerland Preface ThisbookisaboutComputationalTechniquesforIntelligenceAnalysisthatbelongs tothemacro-areaofriskmanagement.Riskmanagementistheprocessfocusedon identification,measurement,assessment,andprocessingofriskswithinanorgani- zationandshouldallowtherightbalancebetweenthecostsofprotectionmeasures andtheirbenefitsforsuchorganization.Insuchacontext,intelligenceisthephaseof riskmanagementdealingwiththepredictionofanomalous(malicious,harmful,etc.) eventsinsomespecificdomains:security,safety,emergency,surveillance,infrastruc- ture resilience, etc. Terrorist attacks, cyber-attacks, plane crashes, accident at sea, fakenewsdiffusion,andspreadofpandemicareallexamplesofeventsthatcanbe consideredbyintelligenceanalysis. In particular, the commitment of intelligence is multiple: determining critical assets,identifyingandevaluatingexistingcountermeasures,definingpossiblethreats, determining system vulnerabilities, and defining potential losses in the case of a probableanomalousevent.Fromtheinformationprocessingviewpoint,intelligence includesmethodologies,activities,andtoolsaimedatobtainingcomplex(oftenstruc- tured)informationfromasetofisolateddata(oftenrawdata)gatheredfromanindi- vidual sensor or a sensor system. Such information is used to increase knowledge andawarenessofsituationsoccurringinagivenscenario. DespitenumerousexistingmethodologiesandpracticessupportingIntelligence analysis, this book focuses on the definition and implementation of computational tools,mostly data driven, supporting decision-making processes along several and heterogeneousintelligencescenarios.Inparticular,theaforementionedtoolsaimat increasingthelevelofsituationawarenessofdecision-makersthroughtheconstruc- tion of abstract structures on which it is possible to reason in order to foster the chanceofthehumanoperatortomakequalitativedecisions. This book will appeal to students, professional, and academic researchers in computational intelligence and approximate reasoning applications for decision- making in intelligence analysis. It is a comprehensive textbook on the subject, supportedwithlotsofcasestudiesandpracticalexamples. Thereaderswillunderstandhowtofacethedefinitionofdecisionsupportsystems fortheintelligenceanalysisthroughtheconcreteapplicationoftheEndsley’sModel v vi Preface of Situation Awareness and the well-known paradigm of granular computing for informationprocessing.Theauthorsshowhowtobuildtheaforementionedsystems byadoptingacognitiveapproach,i.e.,definingcomputationalsolutionsreplicating humanwaysofproblemsolving.Thedidacticapproachofthebookismainlybased on case study analysis that is conducted through the definition of a clear solution methodology, based on cutting-edge computational methods and techniques, and a practical implementation using Python code. In this way, the reader will get the solutionapproachaswellastherelatedimplementationissues. Definitely, the book emphasizes practical applications and computational methods, which are very useful and important both for reducing the cybersecurity skillsshortageandforthefurtherdevelopmentofthefieldofintelligenceanalysis. Focusing on rough set and fuzzy logic theories, three-way decision models, and different reasoning methods, the authors have built and adopt a didactic approach that allows to deep analyze and understand problems and computational solutions and try these solutions with the support of hands-on laboratory based on Python code. According to the content structure, the book focuses the first chapters on the concepts of situation awareness and decision-making in intelligence analysis and on a clear background on the main theoretical computational methods which are used. Next, it moves clearly and efficiently from concepts and paradigms to case studies,methodologies,andimplementation.Thebookendswiththedescriptionofa technologicalframeworkforthereal-worldimplementationanddeployoftechniques andmethodsdescribedinthevariouschapters. Fisciano(SA),Italy VincenzoLoia June2022 FrancescoOrciuoli AngeloGaeta Contents PartI Foundations 1 Introduction .................................................. 3 1.1 BookContentStructure ................................... 3 1.2 DidacticAspects ......................................... 4 1.3 UsingPythonandGoogleColaboratory ..................... 7 1.4 UsefulResources ......................................... 10 2 IntelligenceAnalysis ........................................... 13 2.1 LearningObjectivesoftheChapter ......................... 13 2.2 TopicMapoftheChapter ................................. 14 2.3 WhatIsIntelligenceAnalysis? ............................. 14 2.4 TheIntelligenceProcess ................................... 17 2.5 TheAnalysisProcessandAnalyticTradecraft ................ 18 2.5.1 FamiliesofSAT ................................... 20 2.5.2 Adoption of SAT in the Intelligence Analysis Process ........................................... 23 2.5.3 CognitiveandPerceptualBiases ..................... 24 2.6 SomeChallengesofIntelligenceAnalysis ................... 25 3 FoundationsoftheComputationalTechniques ................... 27 3.1 LearningObjectivesoftheChapter ......................... 27 3.2 TopicMapoftheChapter ................................. 28 3.3 SituationAwareness ...................................... 28 3.3.1 SADemons ....................................... 31 3.3.2 InformationProcessingforSA ....................... 33 3.3.3 Goal-DirectedTaskAnalysis ........................ 34 3.3.4 RepresentingOperationalSituations .................. 38 3.4 GranularComputing ...................................... 38 3.5 DealingwithImpreciseandUncertainInformation ............ 40 3.5.1 RoughSetTheory ................................. 41 3.5.2 FuzzySetTheory .................................. 43 vii viii Contents 3.6 Three-WayDecisions ..................................... 45 3.6.1 SettingThresholdsin3WD .......................... 48 3.7 Hands-onLab ........................................... 50 3.7.1 BasicSourceCode ................................. 50 3.7.2 ProbabilisticandTraditionalRoughSets .............. 56 3.7.3 Three-WayDecisions ............................... 61 3.7.4 FuzzySetsandFuzzyRelations ...................... 64 3.7.5 UsefulResources .................................. 68 4 ApplyingSituationAwarenesstoIntelligenceAnalysis ............ 71 4.1 LearningObjectivesofthisChapter ......................... 71 4.2 TopicMapoftheChapter ................................. 72 4.3 InformationProcessing:OverallFramework .................. 72 4.4 MappingintoIntelligenceCycles ........................... 74 4.5 SelectionandAdoptionofConcreteTechniques .............. 75 PartII ComputationalTechniques 5 DecisionMakingThroughWhat-IfAnalysis ..................... 81 5.1 LearningObjectivesoftheChapter ......................... 81 5.2 TopicMapoftheChapter ................................. 82 5.3 CaseIntroduction:VesselSurveillance ...................... 83 5.4 Methodology ............................................ 84 5.5 ComputationalTechniques ................................. 86 5.5.1 LatticeDerivationwithProbabilisticRoughSets ....... 86 5.5.2 MeasuresforSituationEvolution ..................... 88 5.5.3 Reasoningwith3WDonTemporalStructures .......... 88 5.6 AnalyticalValue ......................................... 90 5.7 Hands-onLab ........................................... 90 5.7.1 LatticeBuilding ................................... 93 5.7.2 AssessingtheSituationEvolution .................... 94 5.8 UsefulResources ......................................... 96 6 SystemModellingwithGraphs ................................. 97 6.1 LearningObjectivesoftheChapter ......................... 97 6.2 TopicMapoftheChapter ................................. 98 6.3 CaseIntroduction:EvaluationofCriticalNodesinaCritical Infrastructure ............................................ 99 6.4 Methodology ............................................ 100 6.5 ComputationalTechniques ................................. 101 6.5.1 3WDSupportedbyNetworkAnalysis ................ 101 6.5.2 ReasoningonGraphswithGrC ...................... 102 6.6 AnalyticalValue ......................................... 104 6.7 Hands-onLab ........................................... 105 6.7.1 Dataset ........................................... 105 6.7.2 BuildingtheGraph ................................. 105 Contents ix 6.7.3 CalculatingT Values ............................... 107 6.7.4 BuildingtheDecisionTable ......................... 109 6.7.5 Applying3WD .................................... 110 6.7.6 ImplementingaResilienceModel .................... 112 6.8 UsefulResources ......................................... 115 7 BehaviourModellingwithFuzzySignatures ..................... 117 7.1 LearningObjectivesoftheChapter ......................... 117 7.2 TopicMapoftheChapter ................................. 118 7.3 Case Introduction: Counter-Terrorism Analysis withtheGlobalTerrorismDatabase ......................... 119 7.4 Methodology ............................................ 120 7.5 ComputationalTechniques ................................. 121 7.5.1 FuzzySignature ................................... 121 7.5.2 ReasoningBasedon3WDandFuzzySignature ........ 123 7.6 AnalyticalValue ......................................... 124 7.7 Hands-onLab ........................................... 124 7.7.1 BuildingtheActivityMatrix ......................... 125 7.7.2 DefiningtheFuzzySets ............................. 126 7.7.3 ConstructingtheFuzzySignature .................... 128 7.7.4 ProjectingandReasoningwithFuzzySignatures ....... 129 7.8 UsefulResources ......................................... 133 8 ConceptDriftAnalysiswithStructuresofOpposition ............. 135 8.1 LearningObjectivesoftheChapter ......................... 136 8.2 TopicMapoftheChapter ................................. 137 8.3 CaseIntroduction:OpinionChanges ........................ 138 8.4 Methodology ............................................ 139 8.5 ComputationalTechniques ................................. 141 8.5.1 CreatingandReasoningonStructuresofOpposition BasedonRoughSet ................................ 142 8.6 AnalyticalValue ......................................... 143 8.7 Hands-onLab ........................................... 144 8.7.1 BuildingHexagonsofOpposition .................... 144 8.7.2 VisualizingHexagonsofOpposition .................. 147 8.8 UsefulResources ......................................... 149 PartIII MethodologicalandTechnologicalInsight 9 Comparing Different Approaches for Implementing Probability-BasedRoughSetOperators ......................... 153 9.1 UsefulResources ......................................... 156 10 DataStreamingScenarios ...................................... 157 10.1 UsefulResources ......................................... 166 x Contents 11 Dealing with Continuous Variables: Neighborhood andDominanceBasedRoughSets .............................. 167 11.1 StrategiesforImplementingNeighborhoodRoughSets ........ 169 11.2 UsefulResources ......................................... 177 References ........................................................ 179

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.