Computational Social Networks Ajith Abraham • Aboul-Ella Hassanien Editors Computational Social Networks Tools, Perspectives and Applications 123 Editors Dr.AjithAbraham Dr.Aboul-EllaHassanien MachineIntelligenceResearchLabs FacultyinComputersandInformation (MIRLabs) DepartmentofInformationTechnology ScientificNetworkforInnovation CairoUniversity andResearchExcellence AhmedZewalStreet5 Auburn,Washington Giza,Orman USA Egypt ISBN978-1-4471-4047-4 ISBN978-1-4471-4048-1(eBook) DOI10.1007/978-1-4471-4048-1 SpringerLondonHeidelbergNewYorkDordrecht LibraryofCongressControlNumber:2012941367 ©Springer-VerlagLondon2012 Thisworkissubjecttocopyright.AllrightsarereservedbythePublisher,whetherthewholeorpartof thematerialisconcerned,specificallytherightsoftranslation,reprinting,reuseofillustrations,recitation, broadcasting,reproductiononmicrofilmsorinanyotherphysicalway,andtransmissionorinformation storageandretrieval,electronicadaptation,computersoftware,orbysimilarordissimilarmethodology nowknownorhereafterdeveloped.Exemptedfromthislegalreservationarebriefexcerptsinconnection with reviews or scholarly analysis or material supplied specifically for the purpose of being entered and executed on a computer system, for exclusive use by the purchaser of the work. Duplication of this publication or parts thereof is permitted only under the provisions of the Copyright Law of the Publisher’slocation,initscurrentversion,andpermissionforusemustalwaysbeobtainedfromSpringer. PermissionsforusemaybeobtainedthroughRightsLinkattheCopyrightClearanceCenter.Violations areliabletoprosecutionundertherespectiveCopyrightLaw. Theuseofgeneraldescriptivenames,registerednames,trademarks,servicemarks,etc.inthispublication doesnotimply,evenintheabsenceofaspecificstatement,thatsuchnamesareexemptfromtherelevant protectivelawsandregulationsandthereforefreeforgeneraluse. While the advice and information in this book are believed to be true and accurate at the date of publication,neithertheauthorsnortheeditorsnorthepublishercanacceptanylegalresponsibilityfor anyerrorsoromissionsthatmaybemade.Thepublishermakesnowarranty,expressorimplied,with respecttothematerialcontainedherein. Printedonacid-freepaper SpringerispartofSpringerScience+BusinessMedia(www.springer.com) Preface ComputationalSocialNetwork(CSN)isanewemergingfieldthathasoverlapping regionsfrom Mathematics, Psychology,ComputerSciences, Sociology,and Man- agement. E-mails, blogs, instant messages, social network services, wikis, social bookmarking,andother instancesof whatis oftencalled socialsoftware illustrate ideasfrom socialcomputing.Social networkanalysis is the study of relationships amongsocialentities. Very often, all the necessary information are distributed over a number of websitesandservers,whichbringsseveralresearchchallengesfromadatamining perspective.This book is a collection of chaptersauthoredby world-class experts illustratingtheconceptofsocialnetworksfromacomputationalpointofview,with afocusonpracticaltools,applications,andopenavenuesforfurtherresearch.The maintopicscoverthedesignanduseofvariouscomputationaltoolsandsoftware, simulations of social networks, representation and analysis of social networks, use of semantic networks in design, and community-based research issues such as knowledge discovery and visualization. The authors present some of the latest advancesofcomputationalsocialnetworksandillustratehoworganizationscangain competitiveadvantagesby applyingthe differentemergenttechniquesin the real- world scenarios. Experience reports, survey articles, and intelligence techniques and theories with specific networks technology problems are depicted. We hope that this book will be useful for researchers, scholars, postgraduate students, and developers who are interested in social networks research and related issues. In particular, the book will be a valuable companion and comprehensive reference for both postgraduate and senior undergraduate students who are taking a course in Computational Social Networks. The book contains 18 chapters, which are dividedintotwoPartsandallchaptersareself-containedtoprovidegreatestreading flexibility. PartIcomprisesofeightchapters(includinganintroductorychapter)anddeals with modeling aspects and various computational tools used for social network analysis. In Chap.1, Panda et al. provides an overview of a number of social network relatedconceptsfromacomputationalperspective,suchassocialnetworkanalysis, v vi Preface differentperformancemeasures,socialnetworkservices,tools,andapplications.In addition,theauthorsalsoillustratesomeofthecurrentmainproblemsfacingsocial networks, how to address such challenges, opportunities, and future directions of research. Xu in Chap.2 proposes a hierarchical graphical knowledge representation (HGKR) to integrate layered abstractions into a coherent structure such that behaviorforecastingmay propagatedownwardor aggregateupwardin a network. Thesystemconsistsofahierarchicalgraphicalmodel,anevolutionarycomputation module,inference/forecasting,anddecisionsupporttoforecastbehaviorsofgroups atdifferenthierarchies. InChap.3,HerbietandBouvryillustratenovelsocialstructureminingtechniques devotedtotheoperationofdynamicmobilesocialnetworks.Theauthorsfocuson theimpactofthenotionofdynamicsandtime-evolvingcharacteristicsofthesocial structuresandprovidethecompletestateoftheart.Further,anovelapproachbased onepidemicpropagationfordynamicclusteringanddiscoveryofcommunitiesare introducedandtheframeworkisillustratedusingcasestudies. Labatut and Balasque in Chap.4 present an interesting problem of community detectioninsocialnetworks.Afterpresentingthestateoftheart,theauthorsfocus on the methodological tools to analyze the obtained community structure, both in terms of topological features and nodal attributes. Real-world social network examplesare used to illustrate the applicationof the presentedtools and interpret theresultsfromabusinessscienceperspective. InChap.5,Bersano-Mendezetal.introducehowsocialnetworkscanbemodeled andanalyzedusinggraphtheory.Thischapterprovidesanextensiveoverviewtothe mathematicalmodelingofsocialnetworkswithanoverviewofthemetricsusedto characterizethem and the modelsused to artificially mimic the formationof such networks. The authors illustrate various metrics based on distances, degrees, and neighborhoodsas well as the use of such metrics to detect change in the network structure. Yang et al. in Chap.6 introduce a number of different ways of studying the macroscopic structure of social networks. The authors focus on the bow-tie decomposition method, and a precise formal definition for the decomposition as well as an algorithm is illustrated. The closely related daisy model and a fractal approacharealsodiscussed. In Chap.7, Apolonia et al. describe the design, the development,and resulting evaluation of a web-enabled platform Cycle-Sharing in Social Networks (CSSN). The platform leverages a social network to perform discovery of computational resources, thus giving the possibility for any user to submit their own jobs for remote processing. Walls, messages, and comments in Facebook are used as the underlying transport for CSSN protocol messages, achieving full portability with existingsocialnetworks.CSSN givesthechanceforcommonuserstounleashthe untappedcomputingpowerhiddeninsocialnetworks. Davidsen andOrtiz-Arroyoin Chap.8 provideananalysison therobustnessof centrality measures using some examples. Further, the authors present a method topredictedgesindynamicsocialnetworks.Experimentalresultsindicatethatthe Preface vii robustnessofthecentralitymeasuresfollowsapredictablepatternandthattheuse oftemporalstatisticscouldimprovetheaccuracyachievedonedgeprediction. PartIIdealswithusageofsocialnetworktoolsandconceptualideasforvarious applicationsandconsistsoftenchapters. Halletal.inChap.9introducethetheoreticalframeworkforcommunityaction and then discuss some of the revolutionary cognitive technologies that provide tools for implementing the theory, and conclude by presenting some preliminary observations from ongoing case studies where the technology has been recently implemented. InChap.10,KundudealswiththeproblemofdynamicWebpredictionwhichis typicallydoneusingMarkovmodel.Predictionrequirescomplicatedmethodologies for selection of a particular hyperlink from the pool of hyperlinks of a current Web page.Theauthorproposesa Web predictionmethod,whichis basedonreal- time characteristics of users. Minimization of the total number of hyperlinks to be selected is the main aim of the proposed approach for accomplishing superior precisionindynamicpredictionmode. KhodaparastandKavianfarinChap.11illustratehowtomakea reliablepublic cooperativenetworkofwirelessuserstoexchangeintra-citydatatrafficinformation without using service providers. The proposed architecture includes a routing algorithm, a forwarding incentive mechanism, a security system, and a resiliency scheme. InChap.12,Huangetal.focusonapplicationsofsocialnetworksinpeer-to-peer networksusingnetworkcodingandNamedDataNetworking,whichisabrand-new frameworkforfuturecommunications. Pal et al. in Chap.13 illustrate how digital devices can contribute to a social network used by people.The authors describe the need for such devices to detect user activity and allow other users to interact using that information, thereby creatinganimmersionoftherealandvirtualworlds. In Chap.14, Luo presents the background of ubiquitous environment, social networks, and media sharing. The authorillustrates why and how social network- basedmediasharingisdestinedtobeindispensableintheubiquitousenvironment. Several applications are used as case studies and some future directions are also provided. GeierhosandEbrahiminChap.15describeanoveltechnicalservicedealingwith the integrationof social networkingchannels into existing business processes. By doingso,businessprocessmanagementsystems,whicharealreadyusedtoe-mail communication, can benefit of social media and also allow companies to follow generaltrendsincustomeropinionsontheInternet. In Chap.16, Cipresso et al. analyze how to consider real emotions in complex networks by understanding subjects’ behaviors in specific situations, such as socialnetworksites navigationand to use these informationin modelingcomplex phenomena. The authors propose a framework comprising of networked agents representingsubjectsandrelationships. Jones et al. in Chap.17 develop a social learning environment prototype in a universityenvironmentbyexploitingthecommunicationandcollaborativequalities viii Preface ofsocialnetworks.Learnersbecomeactiveparticipantsinthelearningprocessand theycouldaccesspublicInternetcontenttopracticeindependentinformation-search andinformation-discernmentskills,whichtheycansharewithothers,andthevirtual learningenvironmentisbenefited. In Chap.18, Falahi et al. connects social networks with recommender systems clearly illustrating the immediate synergies arising from bringing the two com- munitiestogether.Accordingtotheauthors,multiplepotentiallybeneficialmutual synergiesstillremaintobeexploredandtheyprovidethestateoftheartandfuture opportunities. We are verymuch gratefulto the authorsof this book and to the reviewersfor their tremendousservice by critically reviewing the chapters. Most of the authors of chapters included in this book also served as referees for chapters written by otherauthors.Thanksgotoallthosewhoprovidedconstructiveandcomprehensive reviews. The Editors would like to thank Wayne Wheeler and Simon Rees of Springer-Verlag, London, for the editorial assistance and excellent cooperative collaboration to produce this important scientific work. We hope that the reader will share our excitement to present this book on social networks and will find it useful. Prof.(Dr.)AjithAbraham MachineIntelligenceResearchLabs(MIRLabs) ScientificNetworkforInnovationandResearchExcellence(SNIRE) P.O.Box2259 Auburn,Washington98071,USA http://www.mirlabs.org Email:[email protected] PersonalWWW:http://www.softcomputing.net Prof(Dr.)AboulEllaHassanien CairoUniversity FacultyofComputers&Information InformationTechnologyDepartment 5AhmedZewalSt.,Orman,Giza Email:[email protected] PersonalWWW:http://www.fci.cu.edu.eg/(cid:2)abo/ Contents PartI ModelingandTools 1 ComputationalSocialNetworks:Tools,Perspectives, andChallenges.............................................................. 3 MrutyunjayaPanda,NashwaEl-Bendary,MostafaA.Salama, AboulEllaHassanien,andAjithAbraham 2 HierarchicalGraphicalModelsforSocialandBehavioral AnalysisandForecasting .................................................. 25 Jian-WuXu 3 SocialNetworkAnalysisTechniquesforSocial-Oriented MobileCommunicationNetworks........................................ 51 Guillaume-JeanHerbietandPascalBouvry 4 DetectionandInterpretationofCommunitiesinComplex Networks:PracticalMethodsandApplication.......................... 81 VincentLabatutandJean-MichelBalasque 5 MetricsandModelsforSocialNetworks ................................ 115 Nicola´sIgnacioBersano-Me´ndez,Satu Elisa Schaeffer, andJavierBustos-Jime´nez 6 StructuralDecompositionsofComplexNetworks...................... 143 RongYang,LeylaZhuhadar,andOlfaNasraoui 7 Enhancing Online Communities with Cycle-Sharing forSocialNetworks......................................................... 161 NunoApolo´nia,PauloFerreira,andLu´ısVeiga 8 CentralityRobustnessandLinkPredictioninComplex SocialNetworks............................................................. 197 SørenAtmakuriDavidsenandDanielOrtiz-Arroyo ix x Contents PartII Applications 9 SocialNetworkingToolsforKnowledge-BasedActionGroups....... 227 WilliamP.Hall, SusuNousala, RussellBest, andSiddharthNair 10 DynamicWebPredictionUsingAsynchronousMouseActivity....... 257 AnirbanKundu 11 PPMN:ACityWideReliablePublicWirelessMeshNetwork......... 281 AliAsgharKhodaparastandAzadeKavianfar 12 ApplicationsofSocialNetworksinPeer-to-PeerNetworks............ 301 JiaqingHuang,QingyuanLiu,ZhibinLei, andDahMingChiu 13 IntelligentSocialNetworkofDevices .................................... 329 ArpanPal, ChirabrataBhaumik, PriyankaSinha, andAvikGhose 14 SocialNetwork-BasedMediaSharingintheUbiquitous Environment:TechnologiesandApplications........................... 349 XunLuo 15 CustomerInteractionManagementGoesSocial:Getting BusinessProcessesPluggedinSocialNetworks......................... 367 MichaelaGeierhosandMohamedEbrahim 16 RealEmotionsforSimulatedSocialNetworks.......................... 391 PietroCipresso, LuigiSellitti, NadiaElAssawy, FedericaGalli, AnnaBalgera, JeanMarieDembele, MarcoVillamira,andGiuseppeRiva 17 SocialNetworksforLearning:BreakingThroughthe WalledGardenoftheVLE................................................ 417 KarenJones,RhianPole,StephenHole,andJamesWilliams 18 SocialNetworksandRecommenderSystems:AWorld ofCurrentandFutureSynergies ......................................... 445 KannaAlFalahi,NikolaosMavridis,andYacineAtif Index............................................................................... 467