ebook img

Computational Neuroscience: A Comprehensive Approach (Chapman & Hall/CRC Mathematical & Computational Biology) PDF

640 Pages·2003·15.709 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Computational Neuroscience: A Comprehensive Approach (Chapman & Hall/CRC Mathematical & Computational Biology)

C OMPUTATIONAL N EUROSCIENCE A COMPREHENSIVE APPROACH CHAPMAN & HALL/CRC Mathematical Biology and Medicine Series Aims and scope: This series aims to capture new developments and summarize what is known over the whole spectrum of mathematical and computational biology and medicine. It seeks to encourage the integration of mathematical, statistical and computational methods into biology by publishing a broad range of textbooks, reference works and handbooks. The titles included in the series are meant to appeal to students, researchers and professionals in the mathematical, statistical and computational sciences, fundamental biology and bioengineering, as well as interdisciplinary researchers involved in the field. The inclusion of concrete examples and applications, and programming techniques and examples, is highly encouraged. Series Editors Alison M. Etheridge Department of Statistics University of Oxford Louis J. Gross Department of Ecology and Evolutionary Biology University of Tennessee Suzanne Lenhart Department of Mathematics University of Tennessee Philip K. Maini Mathematical Institute University of Oxford Hershel M. Safer Informatics Department Zetiq Technologies, Ltd. Eberhard O. Voit Department of Biometry and Epidemiology Medical University of South Carolina Proposals for the series should be submitted to one of the series editors above or directly to: CRC Press UK 23 Blades Court Deodar Road London SW15 2NU UK Chapman & Hall/CRC Mathematical Biology and Medicine Series C OMPUTATIONAL N EUROSCIENCE A COMPREHENSIVE APPROACH EDITED BY J F IANFENG ENG CHAPMAN & HALL/CRC A CRC Press Company Boca Raton London New York Washington, D.C. C3626_Disc.fm Page 1 Thursday, August 28, 2003 9:23 AM Library of Congress Cataloging-in-Publication Data Computational neuroscience : comprehensive approach / edited by Jianfeng Feng. p. cm.(cid:151)(Chapman & Hall/CRC mathematical biology and medicine series) Includes bibliographical references and index. ISBN 1-58488-362-6 (alk. paper) 1. Computational neuroscience. I. Feng, Jianfeng. II. Series. QP357.5.C633 2003 573.81(cid:151)dc21 2003051578 This book contains information obtained from authentic and highly regarded sources. Reprinted material is quoted with permission, and sources are indicated. A wide variety of references are listed. Reasonable efforts have been made to publish reliable data and information, but the author and the publisher cannot assume responsibility for the validity of all materials or for the consequences of their use. Neither this book nor any part may be reproduced or transmitted in any form or by any means, electronic or mechanical, including photocopying, micro(cid:222)lming, and recording, or by any information storage or retrieval system, without prior permission in writing from the publisher. All rights reserved. Authorization to photocopy items for internal or personal use, or the personal or internal use of speci(cid:222)c clients, may be granted by CRC Press LLC, provided that $1.50 per page photocopied is paid directly to Copyright Clearance Center, 222 Rosewood Drive, Danvers, MA 01923 USA. The fee code for users of the Transactional Reporting Service is ISBN 1-58488-362- 6/04/$0.00+$1.50. The fee is subject to change without notice. For organizations that have been granted a photocopy license by the CCC, a separate system of payment has been arranged. The consent of CRC Press LLC does not extend to copying for general distribution, for promotion, for creating new works, or for resale. Speci(cid:222)c permission must be obtained in writing from CRC Press LLC for such copying. Direct all inquiries to CRC Press LLC, 2000 N.W. Corporate Blvd., Boca Raton, Florida 33431. Trademark Notice: Product or corporate names may be trademarks or registered trademarks, and are used only for identi(cid:222)cation and explanation, without intent to infringe. Visit the CRC Press Web site at www.crcpress.com ' 2004 by Chapman & Hall/CRC No claim to original U.S. Government works International Standard Book Number 1-58488-362-6 Library of Congress Card Number 2003051578 Printed in the United States of America 1 2 3 4 5 6 7 8 9 0 Printed on acid-free paper Contents 1 ATheoreticalOverview HenryCTuckwell1,andJianfengFeng2 1Epidemiologyand InformationScience,FacultyofMedicineStAntoine,UniversityofParis6, 27rueChaligny,75012Paris,France,2DepartmentofInformatics, UniversityofSussex,BrightonBN19QH,U.K. 1.1Introduction 1.2Deterministicdynamicalsystems 1.2.1Basicnotationandtechniques 1.2.2Singleneuronmodelling 1.2.3Phasemodel 1.3Stochasticdynamicalsystems 1.3.1Jumpprocesses 1.3.2Diffusionprocesses 1.3.3Jump-diffusionmodels 1.3.4Perturbationofdeterministicdynamicalsystems 1.4Informationtheory 1.4.1Shannoninformation 1.4.2Mutualinformation 1.4.3Fisherinformation 1.4.4 Relationshipbetweenthevariousmeasurementsofinforma- tion 1.5Optimalcontrol 1.5.1Optimalcontrolofmovement 1.5.2Optimalcontrolofsingleneuron 2 AtomisticSimulationsofIonChannels PeterD.TielemanDept.ofBiologicalSciences,UniversityofCalgary, Alberta,CanadaT2N1N4 2.1Introduction 2.1.1Scopeofthischapter 2.1.2Ionchannels 2.2Simulationmethods 2.2.1Moleculardynamics 2.2.2Continuumelectrostatics 2.2.3Browniandynamics 2.2.4Othermethods 2.3 Selectedapplications 2.3.1Simpli (cid:222)edsystems 2.3.2GramicidinA 2.3.3Alamethicin 2.3.4OmpF 2.3.5ThepotassiumchannelKcsA 2.4 Outlook 3 ModellingNeuronalCalciumDynamics SaleetM.Jafri1,andKeun-HangYang2 1PrograminBioinformatics andComputationalBiology,SchoolofComputationalSciences,George MasonUniversity,10900UniversityBlvd.,Manassas,VA20110,U.S., 2DepartmentofNeurology,TheJohnsHopkinsUniversity,Schoolof Medicine,600NorthWolfeStreet,Meyer2-147Baltimore,MD21287, U.S. 3.1Introduction 3.2 Basicprinciples 3.2.1Intracellularcalciumstores 3.2.2Calciumchannels 3.2.3Calciumpumpsandexchangers 3.2.4Mitochondrialcalcium 3.3Specialcalciumsignalingforneurons 3.3.1Localdomaincalcium 3.3.2Cross-talkbetweenchannels 3.3.3Controlofgeneexpression 3.4Conclusions 4 Structure-BasedModelsofNODiffusionintheNervousSystem AndrewPhilippides1,PhilHusbands2,TomSmith1,andMichael O(cid:146)Shea1 CentreforComputationalNeuroscienceandRobotics(CCNR), 1DepartmentofBiology,2DepartmentofInformatics,UniversityofSussex, Brighton,U.K. 4.1Introduction 4.2Methods 4.2.1EquationsgoverningNOdiffusioninthebrain 4.2.2Analyticsolutionstothediffusionequation 4.2.3ModellingdiffusionofNOfromanirregular3Dstructure 4.2.4Parametervalues 4.3 Results 4.3.1Diffusionfromatypicalneuron 4.3.2Effectofneuronsize 4.3.3Smallsources 4.4Exploringfunctionalroleswithmoreabstractmodels 4.4.1TheGasNetmodel 4.4.2Gasdiffusioninthenetworks 4.4.3Modulation 4.5Conclusions 5 StochasticModellingofSingleIonChannels AlanG.Hawkes EuropeanBusinessManagementSchool,Universityof Wales,Swansea,SA28PP,U.K. 5.1Introduction 5.2Somebasicprobability 5.3 Singlechannelmodels 5.3.1Athree-statemechanism 5.3.2Asimplechannel-blockmechanism 5.3.3A (cid:222)ve-statemodel 5.4Transitionprobabilities,macroscopiccurrentsandnoise 5.4.1Transitionprobabilities 5.4.2Macroscopiccurrentsandnoise 5.5Behaviourofsinglechannelsunderequilibriumconditions 5.5.1Thedurationofstayinanindividualstate 5.5.2Thedistributionofopentimesandshuttimes 5.5.3Jointdistributions 5.5.4Correlationsbetweenintervals 5.5.5Burstingbehaviour 5.6 Timeintervalomission 5.7 Somemiscellaneoustopics 5.7.1Multiplelevels 5.7.2HiddenMarkovMethodsofanalysis 6 TheBiophysicalBasisofFiringVariabilityinCorticalNeurons HughP.C.Robinson DepartmentofPhysiology,Universityof Cambridge,DowningStreet,Cambridge,CB23EG,U.K. 6.1Introduction 6.2Typicalinputiscorrelatedandirregular 6.3Synapticunreliability 6.4 Postsynapticionchannelnoise 6.5Integrationofatransientinputbycorticalneurons 6.6Noisyspikegenerationdynamics 6.7DynamicsofNMDAreceptors 6.8Class1andclass2neuronsshowdifferentnoisesensitivities 6.9Corticalcelldynamicalclasses 6.10Implicationsforsynchronous (cid:222)ring 6.11Conclusions 7 GeneratingQuantitativelyAccurate,butComputationallyConcise,Models ofSingleNeurons GarethLeng,ArletaReiff-Marganiec,MikeLudwig,andNancy Sabatier CollegeofMedicalandVeterinarySciences,Universityof Edinburgh,EH98XD,U.K. 7.1Introduction 7.1.1Thescaleoftheproblem 7.1.2Strategiesfordevelopingcomputationallyconcisemodels 7.2Thehypothalamo-hypophysialsystem 7.2.1Firingpatternsofvasopressinneurons 7.2.2 Implications of membrane bistability for responsiveness to afferentinput 7.2.3Firingpatternsofoxytocincells 7.2.4Intrinsicproperties 7.2.5IntracellularCa 2+concentration 7.2.6Implications 7.3 Statisticalmethodstoinvestigatetheintrinsicmechanismsunderly- ingspikepatterning 7.3.1Selectingrecordingsforanalysis 7.3.2Interspikeintervaldistributions 7.3.3Modelling 7.3.4Simulatingoxytocincellactivity 7.3.5Experimentaltestingofthemodel 7.3.6Firingrateanalysis 7.3.7Indexofdispersion 7.3.8Autocorrelationanalysis 7.4 Summaryandconclusions 8 BurstingActivityinWeaklyElectricFish Ru¤digerKrahe1 andFabrizioGabbiani2 1BeckmanInstitutefor AdvancedScienceandTechnology,DepartmentofMolecularand IntegrativePhysiology,UniversityofIllinoisatUrbana/Champaign,405N. MathewsAve.Urbana,IL61801,U.S.2DivisionofNeuroscience,Baylor CollegeofMedicine,OneBaylorPlaza,Houston,TX77030,U.S. 8.1Introduction 8.1.1Whatisaburst? 8.1.2Whybursts? 8.2 Overviewoftheelectrosensorysystem 8.2.1Behavioralsigni (cid:222)canceofelectrosensation 8.2.2Neuroanatomyoftheelectrosensorysystem 8.2.3Electrophysiologyandencodingofamplitudemodulations 8.3 Featureextractionbyspikebursts 8.3.1Burstsreliablyindicaterelevantstimulusfeatures 8.3.2Featureextractionanalysis 8.4Factorsshapingburst (cid:222)ringinvivo 8.5 Conditionalactionpotentialbackpropagationcontrolsburst(cid:222)ringin vitro 8.5.1Experimentalevidenceforconditionalbackpropagation 8.5.2Multicompartmentalmodelofpyramidalcellbursts 8.5.3Reducedmodelsofburst (cid:222)ring 8.6Comparisonwithotherburstingneurons 8.6.1Ping-pongbetweensomaanddendrite 8.6.2Dynamicalpropertiesofburstoscillations 8.6.3Intra-burstISIsequences 8.7Conclusions 9 LikelihoodMethodsforNeuralSpikeTrainDataAnalysis EmeryN.Brown,RiccardoBarbieri,UriT.Eden,andLorenM. Frank NeuroscienceStatisticsResearchLaboratory,Departmentof AnesthesiaandCriticalCare,MassachusettsGeneralHospital,U.S., DivisionofHealthSciencesandTechnology,HarvardMedicalSchool, MassachusettsInstituteofTechnology,U.S. 9.1Introduction 9.2 Theory 9.2.1 Theconditionalintensityfunctionandinterspikeintervalprob- abilitydensity 9.2.2Thelikelihoodfunctionofapointprocessmodel 9.2.3 Summarizing the likelihood function: maximum likelihood estimationandFisherinformation 9.2.4Propertiesofmaximumlikelihoodestimates 9.2.5Modelselectionandmodelgoodness-of- (cid:222)t 9.3 Applications 9.3.1Ananalysisofthespikingactivityofaretinalneuron 9.3.2Ananalysisofhippocampalplace-speci (cid:222)c(cid:222)ringactivity 9.3.3 Ananalysisofthespatialreceptive(cid:222)elddynamicsofahip- pocampalneuron 9.4Conclusion 9.5 Appendix 10Biologically-DetailedNetworkModelling AndrewDavisonYaleUniversitySchoolofMedicine,Sectionof Neurobiology,P.O.Box208001,NewHaven,CT06520-8001,U.S. 10.1Introduction 10.2Cells 10.2.1Modellingolfactorybulbneurons 10.2.2Modellingcerebellumneurons 10.3Synapses 10.4Connections 10.4.1Networktopology 10.4.2Numberofconnections 10.4.3Distributionofconnections 10.5Inputs 10.5.1Spatiotemporalpatternofinputs 10.5.2Inputstoindividualcells 10.6Implementation 10.7Validation 10.8Conclusions 11HebbianLearningandSpike-Timing-DependentPlasticity SenSongFreemanBuilding,ColdSpringHarborLaboratory,1Bungtown Rd.,ColdSpringHarbor,NY22734,U.S. 11.1Hebbianmodelsofplasticity 11.2Spike-timingdependentplasticity 11.3RoleofconstraintsinHebbianlearning 11.3.1Covariancerule 11.3.2Constraintsbasedonpostsynapticrate 11.3.3Constraintsontotalsynapticweights 11.4CompetitiveHebbianlearningthroughSTDP 11.4.1STDPisstableandcompetitivebyitself 11.4.2Temporalcorrelationbetweeninputsandoutputneuron 11.4.3Meanrateofchangeinsynapticstrength 11.4.4Equilibriumsynapticstrengths 11.4.5Threecommonscenariosandcomparisontosimulations 11.5TemporalaspectsofSTDP 11.6STDPinanetwork 11.6.1Hebbianmodelsofmapdevelopmentandplasticity 11.6.2Distributedsynchronyinarecurrentnetwork 11.7Conclusion 12CorrelatedNeuronalActivity:High-andLow-LevelViews EmilioSalinas1,andTerrenceJ.Sejnowski2,31Departmentof NeurobiologyandAnatomy,WakeForestUniversitySchoolofMedicine, MedicalCenterBoulevard,Winston-Salem,NC27157-1010,U.S., 2ComputationalNeurobiologyLaboratory,HowardHughesMedical Institute,TheSalkInstituteforBiologicalStudies,10010NorthTorrey PinesRoad,LaJolla,CA92037,U.S.,3DepartmentofBiology,University ofCaliforniaatSanDiego,LaJolla,CA92093,U.S. 12.1Introduction:thetiminggame 12.2Functionalrolesforspiketiming 12.2.1Stimulusrepresentation 12.2.2Information (cid:223)ow 12.3Correlationsarisingfromcommoninput 12.4Correlationsarisingfromlocalnetworkinteractions 12.5Whenareneuronssensitivetocorrelatedinput? 12.5.1Coincidencedetection

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.