ebook img

Computational Methods in Electromagnetic Compatibility: Antenna Theory Approach versus Transmission Line Models PDF

417 Pages·2018·17.013 MB·417\417
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Computational Methods in Electromagnetic Compatibility: Antenna Theory Approach versus Transmission Line Models

ComputationalMethodsinElectromagneticCompatibility Computational Methods in Electromagnetic Compatibility: Antenna Theory Approach versus Transmission line Models DraganPoljakandKhalilElKhamlichiDrissi Thiseditionfirstpublished2018 ©2018JohnWiley&Sons,Inc. Allrightsreserved.Nopartofthispublicationmaybereproduced,storedinaretrievalsystem, ortransmitted,inanyformorbyanymeans,electronic,mechanical,photocopying,recordingor otherwise,exceptaspermittedbylaw.Adviceonhowtoobtainpermissiontoreusematerialfrom thistitleisavailableathttp://www.wiley.com/go/permissions. TherightofDraganPoljakandKhalilElKhamlichiDrissitobeidentifiedastheauthorsofthis workhasbeenassertedinaccordancewithlaw. RegisteredOffices JohnWiley&Sons,Inc.,111RiverStreet,Hoboken,NJ07030,USA EditorialOffice 111RiverStreet,Hoboken,NJ07030,USA Fordetailsofourglobaleditorialoffices,customerservices,andmoreinformationaboutWiley productsvisitusatwww.wiley.com. Wileyalsopublishesitsbooksinavarietyofelectronicformatsandbyprint-on-demand.Some contentthatappearsinstandardprintversionsofthisbookmaynotbeavailableinotherformats. LimitofLiability/DisclaimerofWarranty Thepublisherandtheauthorsmakenorepresentationsorwarrantieswithrespecttotheaccuracy orcompletenessofthecontentsofthisworkandspecificallydisclaimallwarranties;including withoutlimitationanyimpliedwarrantiesoffitnessforaparticularpurpose.Thisworkissold withtheunderstandingthatthepublisherisnotengagedinrenderingprofessionalservices.The adviceandstrategiescontainedhereinmaynotbesuitableforeverysituation.Inviewofon-going research,equipmentmodifications,changesingovernmentalregulations,andtheconstantflow ofinformationrelatingtotheuseofexperimentalreagents,equipment,anddevices,thereaderis urgedtoreviewandevaluatetheinformationprovidedinthepackageinsertorinstructionsfor eachchemical,pieceofequipment,reagent,ordevicefor,amongotherthings,anychangesinthe instructionsorindicationofusageandforaddedwarningsandprecautions.Thefactthatan organizationorwebsiteisreferredtointhisworkasacitationand/orpotentialsourceoffurther informationdoesnotmeanthattheauthororthepublisherendorsestheinformationthe organizationorwebsitemayprovideorrecommendationsitmaymake.Further,readersshould beawarethatwebsiteslistedinthisworkmayhavechangedordisappearedbetweenwhenthis workwaswrittenandwhenitisread.Nowarrantymaybecreatedorextendedbyany promotionalstatementsforthiswork.Neitherthepublishernortheauthorshallbeliableforany damagesarisingherefrom. LibraryofCongressCataloging-in-PublicationData Names:Poljak,D.(Dragan),author.|Drissi,KhalilE.(KhalilEl Khamlichi),author. Title:Computationalmethodsinelectromagneticcompatibility/byDragan Poljak,KhalilElKhamlichiDrissi. Description:Hoboken,NJ:JohnWiley&Sons,2018.|Includes bibliographicalreferencesandindex.| Identifiers:LCCN2017054464(print)|LCCN2017059021(ebook)|ISBN 9781119337195(pdf)|ISBN9781119337072(epub)|ISBN9781119337171 (cloth) Subjects:LCSH:Electromagneticcompatibility–Dataprocessing.| Electromagnetism–Mathematics. Classification:LCCTK7867.2(ebook)|LCCTK7867.2.P6532018(print)|DDC 621.38–dc23 LCrecordavailableathttps://lccn.loc.gov/2017054464 CoverDesign:Wiley CoverImage:©shuoshu/Gettyimages Setin10/12ptWarnockProbySPiGlobal,Chennai,India PrintedintheUnitedStatesofAmerica 10 9 8 7 6 5 4 3 2 1 Tomylifetimeinspiration,tomybeloveddaughters,mywife,mysister,my mother,andtotheeverlastingmemoryofmyfatherwhorecentlypassedaway andwhowillneverbeforgotten… DraganPoljak Tomydearparents,foralltheirsacrifices,theirlove,theirtenderness,their supportandtheirprayers.AspecialthoughttomymotherwhomImiss terribly,IthinkofyoueverydayandIwillprobablynevercometotermswith thewayyourlifeendedonthisearth. KhalilElKhamlichiDrissi vii Contents Preface xiii PartI ElectromagneticFieldCouplingtoThinWire ConfigurationsofArbitraryShape 1 1 ComputationalElectromagnetics–IntroductoryAspects 3 1.1 TheCharacterofPhysicalModelsRepresentingNatural Phenomena 3 1.1.1 ScientificMethod,aDefinition,History,Development...? 3 1.1.2 PhysicalModelandtheMathematicalMethodtoSolvethe Problem–TheEssenceofScientificTheories 4 1.1.3 PhilosophicalAspectsBehindScientificTheories 7 1.1.4 OntheCharacterofPhysicalModels 8 1.2 Maxwell’sEquations 9 1.2.1 OriginalFormofMaxwell’sEquations 9 1.2.2 ModernFormofMaxwell’sEquations 10 1.2.3 FromtheCornerofPhilosophyofScience 12 1.2.4 FDTDSolutionofMaxwell’sEquations 13 1.2.5 ComputationalExamples 16 1.3 TheElectromagneticWaveEquations 19 1.4 ConservationLawsintheElectromagneticField 20 1.5 DensityofQuantityofMovementintheElectromagneticField 22 1.6 ElectromagneticPotentials 25 1.7 SolutionoftheWaveEquationandRadiationArrowofTime 25 1.8 ComplexPhasorFormofEquationsinElectromagnetics 27 1.8.1 TheGeneralizedSymmetricFormofMaxwell’sEquations 27 1.8.2 ComplexPhasorFormofElectromagneticWaveEquations 29 1.8.3 PoyntingTheoremforComplexPhasors 29 References 31 viii Contents 2 AntennaTheoryversusTransmissionLine Approximation–GeneralConsiderations 33 2.1 ANoteonEMCComputationalModels 33 2.1.1 ClassificationofEMCModels 34 2.1.2 SummaryRemarksonEMCModeling 34 2.2 GeneralizedTelegrapher’sEquationsfortheFieldCoupling toFiniteLengthWires 35 2.2.1 FrequencyDomainAnalysisforStraightWiresaboveaLossy Ground 36 2.2.1.1 IntegralEquationforPECWireofFiniteLengthaboveaLossy Ground 37 2.2.1.2 IntegralEquationforaLossyConductoraboveaLossy Ground 39 2.2.1.3 GeneralizedTelegraphersEquationsforPECWires 39 2.2.1.4 GeneralizedTelegraphersEquationsforLossyConductors 42 2.2.1.5 NumericalSolutionofIntegralEquations 43 2.2.1.6 SimulationResults 46 2.2.1.7 SimulationResultsandComparisonwithTLTheory 46 2.2.2 FrequencyDomainAnalysisforStraightWiresBuriedinaLossy Ground 51 2.2.2.1 IntegralEquationforLossyConductorBuriedinaLossy Ground 51 2.2.2.2 GeneralizedTelegraphersEquationsforBuriedLossyWires 54 2.2.2.3 ComputationalExamples 56 2.2.3 TimeDomainAnalysisforStraightWiresaboveaLossyGround 61 2.2.3.1 Space–TimeIntegro-DifferentialEquationforPECWireabovea LossyGround 61 2.2.3.2 Space–TimeIntegro-DifferentialEquationforLossyConductors 65 2.2.3.3 GeneralizedTelegraphersEquationsforPECWires 66 2.2.3.4 GeneralizedTelegrapher’sEquationsforLossyConductors 70 2.2.4 TimeDomainAnalysisforStraightWiresBuriedinaLossy Ground 74 2.2.4.1 Space–TimeIntegro-DifferentialEquationforPECWirebelowa LossyGround 74 2.2.4.2 Space–TimeIntegro-DifferentialEquationforLossyConductors 79 2.2.4.3 GeneralizedTelegrapher’sEquationsforBuriedWires 80 2.2.4.4 ComputationalResults:BuriedWireScatterer 82 2.2.4.5 ComputationalResults:HorizontalGroundingElectrode 84 2.3 SingleHorizontalWireinthePresenceofaLossyHalf-Space: ComparisonofAnalyticalSolution,NumericalSolution,and TransmissionLineApproximation 86 2.3.1 WireaboveaPerfectGround 88 2.3.2 WireaboveanImperfectGround 89 2.3.3 WireBuriedinaLossyGround 89 Contents ix 2.3.4 AnalyticalSolution 90 2.3.5 BoundaryElementProcedure 92 2.3.6 TheTransmissionLineModel 93 2.3.7 ModifiedTransmissionLineModel 94 2.3.8 ComputationalExamples 95 2.3.8.1 WireaboveaPECGround 95 2.3.8.2 WireaboveaLossyGround 95 2.3.8.3 WireBuriedinaLossyGround 103 2.3.9 FieldTransmittedinaLowerLossyHalf-Space 103 2.3.10 NumericalResults 110 2.4 SingleVerticalWireinthePresenceofaLossyHalf-Space: ComparisonofAnalyticalSolution,NumericalSolution,and TransmissionLineApproximation 114 2.4.1 NumericalSolution 117 2.4.2 AnalyticalSolution 119 2.4.3 ComputationalExamples 121 2.4.3.1 TransmittingAntenna 122 2.4.3.2 ReceivingAntenna 122 2.5 MagneticCurrentLoopExcitationofThinWires 132 2.5.1 DeltaGapandMagneticFrill 134 2.5.2 MagneticCurrentLoop 135 2.5.3 NumericalSolution 136 2.5.4 NumericalResults 139 References 146 3 ElectromagneticFieldCouplingtoOverheadWires 153 3.1 FrequencyDomainModelsandMethods 154 3.1.1 AntennaTheoryApproach:SetofCoupledPocklington’s Equations 154 3.1.2 NumericalSolution 160 3.1.3 TransmissionLineApproximation:Telegrapher’sEquationsinthe FrequencyDomain 162 3.1.4 ComputationalExamples 162 3.2 TimeDomainModelsandMethods 167 3.2.1 TheAntennaTheoryModel 167 3.2.2 TheNumericalSolution 175 3.2.3 TheTransmissionLineModel 181 3.2.4 TheSolutionofTransmissionLineEquationsviaFDTD 182 3.2.5 NumericalResults 184 3.3 ApplicationstoAntennaSystems 187 3.3.1 HelixAntennas 187 3.3.2 Log-PeriodicDipoleArrays 190 3.3.3 GPRDipoleAntennas 198 References 202 x Contents 4 ElectromagneticFieldCouplingtoBuriedWires 205 4.1 FrequencyDomainModeling 205 4.1.1 AntennaTheoryApproach:SetofCoupledPocklington’sEquations forArbitraryWireConfigurations 206 4.1.2 AntennaTheoryApproach:NumericalSolution 210 4.1.3 TransmissionLineApproximation: 212 4.1.4 ComputationalExamples 213 4.2 TimeDomainModeling 216 4.2.1 AntennaTheoryApproach 216 4.2.2 TransmissionLineModel 219 4.2.3 ComputationalExamples 223 References 223 5 LightningElectromagnetics 225 5.1 AntennaModelofLightningChannel 225 5.1.1 IntegralEquationFormulation 226 5.1.2 ComputationalExamples 228 5.2 VerticalAntennaModelofaLightningRod 230 5.2.1 IntegralEquationFormulation 234 5.2.2 ComputationalExamples 236 5.3 AntennaModelofaWindTurbineExposedtoLightning Strike 237 5.3.1 IntegralEquationFormulationforMultipleOverheadWires 240 5.3.2 NumericalSolutionofIntegralEquationSetforOverhead Wires 241 5.3.3 ComputationalExample:TransientResponseofaWTLightning Strike 242 References 247 6 TransientAnalysisofGroundingSystems 253 6.1 FrequencyDomainAnalysisofHorizontalGrounding Electrode 254 6.1.1 IntegralEquationFormulation/ReflectionCoefficient Approach 254 6.1.2 NumericalSolution 257 6.1.3 IntegralEquationFormulation/SommerfeldIntegralApproach 258 6.1.4 AnalyticalSolution 260 6.1.5 ModifiedTransmissionLineMethod(TLM)Approach 261 6.1.6 ComputationalExamples 261 6.1.7 ApplicationofMagneticCurrentLoop(MCL)Sourcemodelto HorizontalGroundingElectrode 284 6.2 FrequencyDomainAnalysisofVerticalGroundingElectrode 288 6.2.1 IntegralEquationFormulation/ReflectionCoefficient Approach 288 Contents xi 6.2.2 NumericalSolution 290 6.2.3 AnalyticalSolution 291 6.2.4 Examples 292 6.3 FrequencyDomainAnalysisofComplexGroundingSystems 297 6.3.1 AntennaTheoryApproach:SetofHomogeneousPocklington’s Integro-DifferentialEquationsforGroundingSystems 298 6.3.2 AntennaTheoryApproach:NumericalSolution 300 6.3.3 ModifiedTransmissionLineMethodApproach 301 6.3.4 FiniteDifferenceSolutionofthePotentialDifferentialEquationfor TransientInducedVoltage 301 6.3.5 ComputationalExamples:GroundingGridsandRings 304 6.3.6 ComputationalExamples:GroundingSystemsforWTs 311 6.4 TimeDomainAnalysisofHorizontalGroundingElectrodes 320 6.4.1 HomogeneousIntegralEquationFormulationintheTime Domain 321 6.4.2 NumericalSolutionProcedureforPocklington’sEquation 322 6.4.3 NumericalResultsforGroundingElectrode 323 6.4.4 AnalyticalSolutionofPocklington’sEquation 323 6.4.5 TransmissionLineModel 324 6.4.6 FDTDSolutionofTelegrapher’sEquations 325 6.4.7 TheLeakageCurrent 326 6.4.8 ComputationalExamplesfortheHorizontalGrounding Electrode 328 References 331 PartII AdvancedModelsinBioelectromagnetics 337 7 HumanExposuretoElectromagneticFields–General Aspects 339 7.1 Dosimetry 340 7.1.1 LowFrequencyExposures 341 7.1.2 HighFrequencyExposures 342 7.2 CouplingMechanisms 342 7.2.1 CouplingtoLFElectricFields 343 7.2.2 CouplingtoLFMagneticFields 343 7.2.3 AbsorptionofEnergyfromElectromagneticRadiation 343 7.2.4 IndirectCouplingMechanisms 344 7.3 BiologicalEffects 344 7.3.1 EffectsofELFFields 345 7.3.2 EffectsofHFRadiation 345 7.4 SafetyGuidelinesandExposureLimits 348 7.5 SomeRemarks 351 References 351 xii Contents 8 ModelingofHumanExposuretoStaticandLowFrequency Fields 353 8.1 ExposuretoStaticFields 354 8.1.1 FiniteElementSolution 356 8.1.2 BoundaryElementSolution 357 8.1.3 NumericalResults 360 8.2 ExposuretoLowFrequency(LF)Fields 361 8.2.1 NumericalResults 362 References 363 9 ModelingofHumanExposuretoHighFrequency(HF) ElectromagneticFields 365 9.1 InternalElectromagneticFieldDosimetryMethods 366 9.1.1 SolutionbytheHybridFiniteElement/BoundaryElement Approach 366 9.1.2 NumericalResultsfortheHumanEyeExposure 368 9.1.3 SolutionbytheMethodofMoments 372 9.1.4 ComputationalExamplefortheBrainExposure 380 9.2 ThermalDosimetryProcedures 381 9.2.1 FiniteElementSolutionofBio-HeatTransferEquation 381 9.2.2 NumericalResults 382 References 383 10 BiomedicalApplicationsofElectromagneticFields 387 10.1 ModelingofInducedFieldsduetoTranscranialMagnetic Stimulation(TMS)Treatment 388 10.1.1 NumericalResults 391 10.2 ModelingofNerveFiberExcitation 392 10.2.1 PassiveNerveFiber 396 10.2.2 NumericalResultsforPassiveNerveFiber 397 10.2.3 ActiveNerveFiber 397 10.2.4 NumericalResultsforActiveNerveFiber 401 References 403 Index 407

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.