ebook img

Computational Methods and Deep Learning for Ophthalmology PDF

354 Pages·2023·17.917 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Computational Methods and Deep Learning for Ophthalmology

1 Computational Methods and Deep Learning for Ophthalmology  Editor  D.Jude Hemanth Professor, Karunya University, Tamil Nadu, India 2 Table of Contents  Cover image  Title page  Copyright  Contributors  1. Classification of ocular diseases using transfer learning approaches and glaucoma severity grading 1.1. Introduction  1.2. Literature review  1.3. Proposed methodology  1.4. Results and discussion  1.5. Conclusion  2.Early diagnosis of diabetic retinopathy using deep learning techniques 2.1. Introduction  2.2. Related background  2.3. Experimental methodology  2.4. Proposed flow  2.5. Results and discussion  3 2.6. Conclusion and future direction  3. Comparison of deep CNNs in the identification of DME structural  changes in retinal OCT scans  3.1. Introduction  3.2. Structural changes of DME  3.3. Convolutional neural networks  3.4. Results and discussion  3.5. Conclusion  4. Epidemiological surveillance of blindness using deep learning ap-  proaches  4.1. Conceptualizing surveillance systems in ophthalmic epidemiology  4.2. Deep learning in ophthalmic epidemiological surveillance  4.3. Limitations  4.4. Conclusion  5. Transfer learning-based detection of retina damage from optical coher-  ence tomography images  5.1. Introduction  5.2. Experimental methodology  5.3. Proposed model  4 5.4. Experimental results and observations  5.5. Conclusion  6. An improved approach for classification of glaucoma stages from color  fundus images using Efficientnet-b0 convolutional neural network and  recurrent neural network  6.1. Introduction  6.2. Related work  6.3. Methodology  6.4. Experimental findings  6.5. Conclusion  7. Diagnosis of ophthalmic retinoblastoma tumors using 2.75D CNN seg-  mentation technique  7.1. Introduction  7.2. Literature review  7.3. Materials  7.4. Methodology  7.5. Experimental analysis  7.6. Discussions  7.7. Conclusion  5 8. Fast bilateral filter with unsharp masking for the preprocessing of optical  coherence tomography images—an aid for segmentation and classification  8.1. Introduction  8.2. Methodology  8.3. Results and discussion  8.4. Conclusion  9. Deep learning approaches for the retinal vasculature segmentation in fun-  dus images  9.1. Introduction  9.2. Significance of deep learning  9.3. Convolutional neural network  9.4. Fully convolved neural network  9.5. Retinal blood vessel extraction  9.6. Artery/vein classification  9.7. Summary  10. Grading of diabetic retinopathy using deep learning techniques  10.1. Introduction  10.2. Materials and methods  10.3. Methodology  6 10.4. Results and discussion  10.5. Conclusion  11. Segmentation of blood vessels and identification of lesion in fundus image by using fractional derivative in fuzzy domain  11.1. Introduction  11.2. Preliminary ideas  11.3. Proposed method of blood vessel extraction  11.4. Proposed method of lesion extraction  11.5. Experimental analysis  11.6. Conclusion  12. U-net autoencoder architectures for retinal blood vessels segmentation  12.1. Introduction  12.2. Related works  12.3. Proposed works  12.4. Experiment  12.5. Conclusion  13. Detection and diagnosis of diseases by feature extraction and analysis on  fundus images using deep learning techniques  13.1. Introduction  7 13.2. Fundus image analysis  13.3. Eye diseases with retinal manifestation  13.4. Diagnosis of glaucoma  13.5. Diagnosis of diabetic retinopathy  13.6. Conclusion  Index  8 Copyright  Academic Press is an imprint of Elsevier  125 London Wall, London EC2Y 5AS, United Kingdom  525 B Street, Suite 1650, San Diego, CA 92101, United States  50 Hampshire Street, 5th Floor, Cambridge, MA 02139, United States  The Boulevard, Langford Lane, Kidlington, Oxford OX5 1GB, United King-  dom  Copyright © 2023 Elsevier Inc. All rights reserved.  No part of this publication may be reproduced or transmitted in any form or  by any means, electronic or mechanical, including photocopying, recording,  or any information storage and retrieval system, without permission in writ-  ing from the publisher. Details on how to seek permission, further infor- mation about the Publisher’s permissions policies and our arrangements  with organizations such as the Copyright Clearance Center and the Copy-  right Licensing Agency, can be found at our website:  www.elsevier.com/permissions.  This book and the individual contributions contained in it are protected  under copyright by the Publisher (other than as may be noted herein).  Notices  Knowledge and best practice in this field are constantly changing. As  new research and experience broaden our understanding, changes in  research methods, professional practices, or medical treatment may  become necessary.  Practitioners and researchers must always rely on their own expe-  rience and knowledge in evaluating and using any information, meth-  ods, compounds, or experiments described herein. In using such  information or methods they should be mindful of their own safety  and the safety of others, including parties for whom they have a pro-  fessional responsibility.  To the fullest extent of the law, neither the Publisher nor the authors,  contributors, or editors, assume any liability for any injury and/or  damage to persons or property as a matter of products liability,  negligence or otherwise, or from any use or operation of any  9 methods, products, instructions, or ideas contained in the material  herein.  ISBN: 978-0-323-95415-0  For information on all Academic Press publications visit our website  at https://www.elsevier.com/books-and-journals  Publisher: Mara Conner  Acquisitions Editor: Chris Katsaropoulos  Editorial Project Manager: Tom Mearns  Production Project Manager: Prem Kumar Kaliamoorthi  Cover Designer: Christian Bilbow  Typeset by TNQ Technologies  10

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.