Lecture Notes in Physics EditorialBoard R.Beig,Wien,Austria W.Beiglbo¨ck,Heidelberg,Germany W.Domcke,Garching,Germany B.-G.Englert,Singapore U.Frisch,Nice,France P.Ha¨nggi,Augsburg,Germany G.Hasinger,Garching,Germany K.Hepp,Zu¨rich,Switzerland W.Hillebrandt,Garching,Germany D.Imboden,Zu¨rich,Switzerland R.L.Jaffe,Cambridge,MA,USA R.Lipowsky,Potsdam,Germany H.v.Lo¨hneysen,Karlsruhe,Germany I.Ojima,Kyoto,Japan D.Sornette,Nice,France,andZu¨rich,Switzerland S.Theisen,Potsdam,Germany W.Weise,Garching,Germany J.Wess,Mu¨nchen,Germany J.Zittartz,Ko¨ln,Germany TheLectureNotesinPhysics TheseriesLectureNotesinPhysics(LNP),foundedin1969,reportsnewdevelopments in physics research and teaching – quickly and informally, but with a high quality and theexplicitaimtosummarizeandcommunicatecurrentknowledgeinanaccessibleway. Bookspublishedinthisseriesareconceivedasbridgingmaterialbetweenadvancedgrad- uatetextbooksandtheforefrontofresearchandtoservethreepurposes: tobeacompactandmodernup-to-datesourceofreferenceonawell-definedtopic • to serve as an accessible introduction to the field to postgraduate students and • nonspecialistresearchersfromrelatedareas tobeasourceofadvancedteachingmaterialforspecializedseminars,coursesand • schools Both monographs and multi-author volumes will be considered for publication. Edited volumes should, however, consist of a very limited number of contributions only. Pro- ceedingswillnotbeconsideredforLNP. VolumespublishedinLNParedisseminatedbothinprintandinelectronicformats,the electronicarchivebeingavailableatspringerlink.com.Theseriescontentisindexed,ab- stractedandreferencedbymanyabstractingandinformationservices,bibliographicnet- works,subscriptionagencies,librarynetworks,andconsortia. ProposalsshouldbesenttoamemberoftheEditorialBoard,ordirectlytothemanaging editoratSpringer: ChristianCaron SpringerHeidelberg PhysicsEditorialDepartmentI Tiergartenstrasse17 69121Heidelberg/Germany [email protected] H. Fehske R. Schneider A. Weiße (Eds.) Computational Many-Particle Physics Editors HolgerFehske RalfSchneider AlexanderWeiße Max-Planck-Institutfu¨rPlasmaphysik Universita¨tGreifswald Wendelsteinstr.1 Institutfu¨rPhysik 17491Greifswald,Germany Felix-Hausdorff-Str.6 [email protected] 17489Greifswald, Germany [email protected] [email protected] H. Fehske, R. Schneider and A. Weiße (Eds.), Computational Many-Particle Physics, Lect.NotesPhys. 739(Springer,BerlinHeidelberg2008),DOI10.1007/978-3-540- 74686-7 LibraryofCongressControlNumber:2007936165 ISSN0075-8450 ISBN978-3-540-74685-0 SpringerBerlinHeidelbergNewYork Thisworkissubjecttocopyright. Allrightsarereserved,whetherthewholeorpartofthematerialis concerned,specificallytherightsoftranslation,reprinting,reuseofillustrations,recitation,broadcasting, reproductiononmicrofilmorinanyotherway,andstorageindatabanks.Duplicationofthispublication orpartsthereofispermitted onlyundertheprovisions oftheGermanCopyright LawofSeptember 9, 1965,initscurrentversion,andpermissionforusemustalwaysbeobtainedfromSpringer.Violations areliableforprosecutionundertheGermanCopyrightLaw. SpringerisapartofSpringerScience+BusinessMedia springer.com (cid:2)c Springer-VerlagBerlinHeidelberg2008 Theuseofgeneraldescriptivenames,registerednames,trademarks,etc.inthispublicationdoesnotimply, evenintheabsenceofaspecificstatement,thatsuchnamesareexemptfromtherelevantprotectivelaws andregulationsandthereforefreeforgeneraluse. Typesetting:bytheauthorsandIntegrausingaSpringerLATEXmacropackage Coverdesign:eStudioCalamarS.L.,F.Steinen-Broo,Pau/Girona,Spain Printedonacid-freepaper SPIN:11808855 543210 Preface Many-particlephysicsisatworkwheneverwedelveintotherichphenomenologyof the realworld, or into laboratoryexperiments.Nevertheless,our physicaldescrip- tion of nature is mostly built upon single-particle theories. For instance, Kepler’s laws provide a basic understandingof our solar system, many features of the pe- riodic table can be understood from the solution of a single hydrogen atom, and even complicated microprocessors with an unbearable number of electrons float- ingthroughmillionsof transistorscanbe developedbasedontheeffectivesingle- particlemodelsofsemiconductorphysics.Theseapproachesaresuccessfulbecause quiteofteninteractionsaffectphysicalsystemsinaperturbativeway.Classicalper- turbationtheoryyieldscorrectionstoaplanet’sorbitduetootherplanets,quantum chemistryreliesonvariousapproximationschemestodealwithcomplicatedatoms and small molecules, and solid state theory uses weakly interacting quasiparticles as elementaryexcitations.This fortunatesituation changes,however,when we try tounderstandmorecomplexorstronglyinteractingsystems,orwhenwetrytoex- plorethe nature of matteritself. Condensatesof cold bosonicatoms, for example, show subtle many-particle effects, strongly correlated fermions may give rise to high-temperaturesuperconductivity,and the way quarks build up elementary par- ticles (hadronization)is a highly non-trivial few-body problem. Another example are quantum computers, which many scientist envision as a replacement for our present-daymicroprocessors,andwhichexploittheentanglementpropertyofquan- tum many-particlestates. Last but not least, we mention the complexity of fusion plasmas,whichsomedaymayhelpfeedingourever-growinghungerfornewenergy resources.Unfortunately,eventhemostsophisticatedanalyticalapproacheslargely failtodescribesuchsystems.Hence,atpresent,unbiasednumericalinvestigations providethemostreliabletooltoaddresstheseproblems.Thisisthepointwherethe expertuseoflarge-scalecomputerscomesintoplay. The increasing importance of computational many-particle physics calls for a comprehensiveintroductionintothisrapidlydevelopingfieldsuitableforgraduate studentsandyoungresearchers.Therefore,wedecidedtoorganizeasummerschool on “Computational Many-Particle Physics” in September 2006, during the 550th anniversary of the University Greifswald. Generously sponsored by the Wilhelm and Else Heraeus Foundation and hosted by the Max-Planck-Institute for Plasma Physics and the Institute for Physics, we brought together more than 40 students and 20 distinguished scientists working on such diverse fields as fusion plasmas, VI Preface statisticalphysics,solidstatetheoryandhighperformancecomputing.Thepresent LectureNotessummarizeandextendthematerialshowcasedovera2-weekperiod oftightlyscheduledtutorials,seminarsandexercises.Theemphasisisonaveryped- agogicalandsystematicintroductiontovariousnumericalconceptsandtechniques, withthehopethatthereadermayquicklystarttoprogramhimself.Thespectrumof thenumericalmethodspresentedisverybroad,coveringclassicalaswellasquan- tumfew-andmany-particlesystems.Thetrade-offbetweenthenumberofparticles, thecomplexityoftheunderlyingmicroscopicmodelsandtheimportanceofthein- teractionsdeterminethe choice of the appropriatenumericalapproach.Therefore, wearrangedthebookalongthealgorithmsandtechniquesemployed,ratherthanon the physics applications, which we think is more naturalfor a book on numerical methods. Westartwithmethodsforclassicalmany-particlesystems.Here,moleculardy- namicsapproachestracethemotionofindividualparticles,kineticapproacheswork withthe distributionfunctionsofparticlesandmomenta,while hybridapproaches combine both concepts. A prominent example is the particle-in-cell method typi- callyappliedtomodelplasmas,wherethetimeevolutionofdistributionfunctionsis approximatedbythedynamicsofpseudo-particles,representingthousandsormil- lions of real particles. Of course, at a certain length scale the quantum nature of the particles becomes important. As an attempt to close the gap between classi- calandquantumsystems,weoutlineanumberofsemi-classical(Wigner-function, Boltzmann- and Vlasov-equation based) approaches, which in particular address transport properties. The concept of Monte Carlo sampling is equally important for classical, statistical and quantum physicalproblems. The correspondingchap- ters therefore account for a substantial part of the book and introduce the major stochasticapproachesinapplicationtoverydifferentphysicalsituations.Focussing on solids and their properties, we continue with ab initio approaches to the elec- tronic structure problem,where band structure effects are taken into accountwith full detail, but Coulomb interactions and the resulting correlations are treated ap- proximately.Dynamicalmeanfieldtheoriesandclusterapproachesaimatimprov- ingthedescriptionofcorrelationsandbridgethegaptoanexactnumericaltreatment of basic microscopic models. Exact diagonalizationof finite systems givesaccess totheirground-state,spectralandthermodynamicproperties.Sincethesemethods workwiththefullmany-particleHamiltonian,thestudyofadecentnumberofpar- ticles or larger system sizes is a challenging task, and there is a strong demand tocircumventthese limitations.Alongthislinethedensitymatrixrenormalization group represents a clever technique to restrict the many-particle Hilbert space to the physically most important subset. Finally, all the discussed methods heavily relyontheuseofpowerfulcomputers,andthebookwouldbeincompletewithout twodetailedchaptersonparallelprogrammingandoptimizationtechniquesforhigh performancecomputing. Ofcourse,thepreparationofsuchacomprehensivebookwouldhavebeenim- possiblewithoutsupportfrommanycolleaguesandsponsors.Firstofall,wethank the lecturers and authors for their engagement, enthusiasm and patience. We are Preface VII greatly indebted to Milena Pfafferottand Andrea Pulss for their assistance during theeditorialworkandthefine-tuningofthearticles.JuttaGauger,BeateKemnitz, ThomasMeyerandGeraldSchubertdidaninvaluablejobintheorganizationofthe summer school. Finally, we acknowledgefinancial supportfrom the Wilhelm and Else Heraeusfoundation,the Deutsche ForschungsgemeinschaftthroughSFB 652 andTR24andtheHelmholtz-GemeinschaftthroughCOMAS. Greifswald, HolgerFehske July2007 RalfSchneider AlexanderWeiße Contents PartI MolecularDynamics 1 IntroductiontoMolecularDynamics RalfSchneider,AmitRajSharma,andAbhaRai ........................ 3 1.1 BasicApproach ............................................... 3 1.2 MacroscopicParameters........................................ 6 1.3 Inter-AtomicPotentials......................................... 8 1.4 NumericalIntegrationTechniques................................ 14 1.5 AnalysisofMDRuns .......................................... 18 1.6 FromClassicaltoQuantum-MechanicalMD....................... 23 1.7 AbInitioMD ................................................. 24 1.8 Car-ParrinelloMolecularDynamics .............................. 25 1.9 PotentialEnergySurface ....................................... 28 1.10 AdvancedNumericalMethods................................... 29 References ......................................................... 37 2 WignerFunctionQuantumMolecularDynamics V.S.Filinov,M.Bonitz,A.Filinov,andV.O.Golubnychiy ................ 41 2.1 QuantumDistributionFunctions ................................. 41 2.2 SemiclassicalMolecularDynamics............................... 43 2.3 QuantumDynamics............................................ 50 2.4 TimeCorrelationFunctionsintheCanonicalEnsemble.............. 54 2.5 Discussion ................................................... 58 References ......................................................... 59 PartII ClassicalMonteCarlo 3 TheMonteCarloMethod,anIntroduction DetlevReiter .................................................... 63 3.1 WhatisaMonteCarloCalculation? .............................. 63 3.2 RandomNumberGeneration .................................... 67 3.3 IntegrationbyMonteCarlo ..................................... 71 3.4 Summary .................................................... 77 References ......................................................... 78 X Contents 4 MonteCarloMethodsinClassicalStatisticalPhysics WolfhardJanke .................................................. 79 4.1 Introduction .................................................. 79 4.2 StatisticalPhysicsPrimer ....................................... 80 4.3 TheMonteCarloMethod....................................... 85 4.4 ClusterAlgorithms ............................................ 93 4.5 StatisticalAnalysisofMonteCarloData .......................... 99 4.6 ReweightingTechniques........................................108 4.7 Finite-SizeScalingAnalysis ....................................114 4.8 GeneralizedEnsembleMethods..................................129 4.9 ConcludingRemarks...........................................135 References .........................................................135 5 TheMonteCarloMethodforParticleTransportProblems DetlevReiter .................................................... 141 5.1 TransportProblemsandStochasticProcesses ......................141 5.2 TheTransportEquation:FredholmIntegral EquationofSecondKind .......................................143 5.3 TheBoltzmannEquation .......................................144 5.4 TheLinearIntegralEquationfortheCollisionDensity ..............147 5.5 MonteCarloSolution ..........................................150 5.6 SomeSpecialSamplingTechniques ..............................154 5.7 AnIllustrativeExample ........................................156 References .........................................................158 PartIII KineticModelling 6 TheParticle-in-CellMethod DavidTskhakaya................................................. 161 6.1 GeneralRemarks..............................................161 6.2 IntegrationofEquationsofParticleMotion ........................163 6.3 PlasmaSourceandBoundaryEffects .............................166 6.4 CalculationofPlasmaParametersandFields ActingonParticles ............................................170 6.5 SolutionofMaxwell’sEquations.................................175 6.6 ParticleCollisions .............................................183 6.7 FinalRemarks ................................................188 References .........................................................188 7 Gyrokinetic and Gyrofluid Theory and Simulation ofMagnetizedPlasmas RichardD.Sydora................................................ 191 7.1 Introduction ..................................................191 7.2 SingleParticleDynamics .......................................193 7.3 ContinuumGyrokinetics........................................200 Contents XI 7.4 GyrofluidModel ..............................................204 7.5 GyrokineticParticleSimulationModel............................207 7.6 GyrokineticParticleSimulationModelApplications ................210 7.7 Summary ....................................................217 References .........................................................218 PartIV SemiclassicalApproaches 8 BoltzmannTransportinCondensedMatter FranzXaverBronold.............................................. 223 8.1 BoltzmannEquationforQuasiparticles ...........................223 8.2 TechniquesfortheSolutionoftheBoltzmannEquation..............230 8.3 Conclusions ..................................................252 References .........................................................253 9 SemiclassicalDescription of QuantumMany-ParticleDynamics inStrongLaserFields ThomasFennelandJo¨rgKo¨hn...................................... 255 9.1 SemiclassicalMany-ParticleDynamics inMean-FieldApproximation ...................................255 9.2 SemiclassicalGroundState .....................................261 9.3 ApplicationtoSimple-MetalClusters.............................265 References .........................................................272 PartV QuantumMonteCarlo 10 World-line andDeterminantalQuantumMonte CarloMethods forSpins,PhononsandElectrons F.F.AssaadandH.G.Evertz........................................ 277 10.1 Introduction ..................................................277 10.2 DiscreteImaginaryTimeWorldLines fortheXXZSpinChain ........................................278 10.3 World-LineRepresentationswithoutDiscretizationError ............299 10.4 LoopOperatorRepresentation oftheHeisenbergModel .......................................303 10.5 Spin-PhononSimulations.......................................308 10.6 AuxiliaryFieldQuantumMonteCarloMethods....................312 10.7 NumericalStabilizationSchemesforLatticeModels ................325 10.8 TheHirsch-FyeImpurityAlgorithm..............................337 10.9 SelectedApplicationsoftheAuxiliaryFieldMethod ................344 10.10 Conclusion...................................................345 10.A TheTrotterDecomposition .....................................345
Description: