ARTICLE Received6Jun 2012 |Accepted 6 Dec 2012 |Published 29 Jan 2013 DOI:10.1038/ncomms2361 OPEN Computational identification of a transiently open L1/S3 pocket for reactivation of mutant p53 Christopher D. Wassman1,2,*,w, Roberta Baronio2,3,*, O¨zlem Demir4,*,w, Brad D. Wallentine5, Chiung-KuangChen5,LindaV.Hall2,3,FaezehSalehi1,2,Da-WeiLin3,BenjaminP.Chung3,G.WesleyHatfield2,6,7, A. Richard Chamberlin4,8,9, Hartmut Luecke2,5,9,10,11, Richard H. Lathrop1,2,9,12, Peter Kaiser2,3,9 & Rommie E. Amaro1,4,8,w The tumour suppressor p53 is the most frequently mutated gene in human cancer. Reacti- vation of mutant p53 by small molecules is an exciting potential cancer therapy. Although several compounds restore wild-type function to mutant p53, their binding sites and mechanisms of action are elusive. Here computational methods identify a transiently open binding pocket between loop L1 and sheet S3 of the p53 core domain. Mutation of residue Cys124, located at the centre of the pocket, abolishes p53 reactivation of mutant R175H by PRIMA-1, a known reactivation compound. Ensemble-based virtual screening against this newlyrevealedpocketselectssticticacidasapotentialp53reactivationcompound.Inhuman osteosarcoma cells, stictic acid exhibits dose-dependent reactivation of p21 expression for mutantR175HmorestronglythandoesPRIMA-1.TheseresultsindicatetheL1/S3pocketasa target for pharmaceutical reactivation of p53 mutants. 1DepartmentofComputerScience,UniversityofCalifornia,Irvine,Irvine,California92697,USA.2InstituteforGenomicsandBioinformatics,Universityof California,Irvine,Irvine,California92697,USA.3DepartmentofBiologicalChemistry,UniversityofCalifornia,Irvine,Irvine,California92697,USA. 4DepartmentofPharmaceuticalSciences,UniversityofCalifornia,Irvine,Irvine,California92697,USA.5DepartmentofMolecularBiologyandBiochemistry, UniversityofCalifornia,Irvine,Irvine,California92697,USA.6DepartmentofMicrobiologyandMolecularGenetics,UniversityofCalifornia,Irvine,Irvine, California92697,USA.7DepartmentofChemicalEngineeringandMaterialsScience,UniversityofCalifornia,Irvine,Irvine,California92697,USA. 8DepartmentofChemistry,UniversityofCalifornia,Irvine,Irvine,California92697,USA.9ChaoFamilyComprehensiveCancerCenter,Universityof California,Irvine,Irvine,California92697,USA.10DepartmentofPhysiologyandBiophysics,UniversityofCalifornia,Irvine,Irvine,California92697,USA. 11CenterforBiomembraneSystems,UniversityofCalifornia,Irvine,Irvine,California92697,USA.12DepartmentofBiomedicalEngineering,Universityof California,Irvine,Irvine,California92697,USA.*Theseauthorscontributedequallytothiswork.wPresentaddresses:GoogleInc.,1600Amphitheatre ParkwayMountainView,California94043,USA(C.D.W.);DepartmentofChemistryandBiochemistry,UniversityofCalifornia,SanDiego;LaJolla,California 92093,USA(O¨.D.,R.E.A.).CorrespondenceandrequestsformaterialsshouldbeaddressedtoP.K.forbiology(email:[email protected])ortoR.E.A.for computation(email:[email protected]). NATURECOMMUNICATIONS|4:1407|DOI:10.1038/ncomms2361|www.nature.com/naturecommunications 1 &2013MacmillanPublishersLimited.Allrightsreserved. ARTICLE NATURECOMMUNICATIONS|DOI:10.1038/ncomms2361 T umoursuppressorproteinp53isatranscriptionfactorthat has an important role in human cancers. It responds to various cell stress conditions, such as DNA damage, and controlspathwaysleadingtoapoptosis(programmedcelldeath), cellular senescence and cell cycle arrest, among others. Tumour initiation and maintenance depend upon inactivation of p53 C124 C124 pathways,whichotherwisewoulddeteruncontrolledcellgrowth. Consequently,p53isthemostfrequentlymutatedgeneinhuman cancers. Nearly half of all human tumours have mutant p53. Approximatelythree-quartersofthosetumoursthathavemutant p53 are found to express full-length p53 protein with a single- residue missense mutation in the p53 DNA-binding core domain1,2. Theresultingpresenceoffull-lengthandsingle-point-mutated p53 protein in about one-third of all human tumours holds the promise of drugs that reactivate mutant p53 function, deter cancer cell proliferation, and shrink or kill the tumour3. Several p53-controlledpathwaysinhibitcellproliferation,andsoarevalid pharmaceutical targets. Studies on transgenic mice demonstrate that p53 reactivation enables tumour regression in vivo, even in advancedtumourcases4–9.Reactivationofp53functionhasbeen demonstratedinvariousp53cancermutantsbybothsecond-site suppressormutations10–16andahandfulofsmallmolecules17–25. Themostwell-studiedandpromisingofthesesmallmoleculesare PRIMA-1and PRIMA-1Met,currently in phase I/IIclinical trials (APR-246-01, http://www.aprea.com/home/). PRIMA-1 is converted into several active products26, among them Figure1|Molecularvisualizationsofthep53coredomain.(a,b)All methylene quinuclidinone (MQ), that react covalently to residuesofthep53coredomain(1TSR-B33)within10ÅofCys124are alkylate p53 cysteine residues. This alkylation can reactivate p53 showninasurfacerepresentationcolouredbyatomtype:cyan,C;blue,N; function26,althoughtheprecisereactivationmechanismremains red,O;yellow,S.(a)Cys124isinitiallyoccludedinthewtcrystalstructure. elusive27. (b)StructureextractedfromMDsimulationsofmutantR273Hrevealsnew Here we describe computational analysis of p53 structural breathingstructuraltopographynearCys124withintherangeofnormal models that suggests a transiently open L1/S3 binding pocket solutiondynamics.(c,d)Thep53coredomainisshowninmagenta,loopL1 around Cys124, Cys135 and Cys141 as a possible target for inblue,strandS3ingold.(c)Cys124(yellow)issurroundedbygenetic reactivation of p53 mutants by small molecules. The pocket was mutationsitesthatcanreactivatep53function(green).(d)Druggable identified through genetic mutations, all-atom molecular pockets(cyan)fromFTMAP44fortheR273Hmutant.TheopenL1/S3 dynamics (MD) simulations of the p53 core domain, computa- pocketsurroundsCys124(yellow). tional solvent mapping of the resulting p53 structural ensemble and ensemble-based virtual screening. Mutation of Cys124 to alanineabolishedknownR175HreactivationeffectsofPRIMA-1 p53reactivationregion,andcovalentalkylationofacysteinethiol in human Saos-2 cancer cells. Ensemble-based virtual screen- group had been suggested for p53 reactivation by PRIMA-1 ing28,29 was used to select 45 compounds with the most conversion products such as MQ and other p53 reactivation favourable predicting binding affinity to the L1/S3 pocket. Of compounds26.Inthiscysteinetriad,Cys124wasthemostsolvent- these, stictic acid emerged as a p53 reactivation compound in accessible, followed by Cys141 and then Cys135, in both the cultured human osteosarcoma cells, with the ability to stabilize crystal structures and the MD simulations (Table 1). Initial p53 in vitro. alkylation of Cys124 had been suggested to enable alkylation of Cys141 and then Cys135 (ref. 32). In the crystal structures of the human p53 core DNA-binding Results domain(PDBIDs1TSR33,2OCJ34),Cys124ispartiallyoccluded Computational identification of the L1/S3 binding pocket. andtheputativeL1/S3reactivationpocketisnotreadilyaccessible Initial docking of known p53 reactivation compounds (MQ, 3- tosmallmoleculesmuchlargerthanwater.Thisocclusioninthe methylene-2-norbornanone (NB), STIMA-1, MIRA-1, 2, 3 (refs crystal structure might seem to preclude alkylation of Cys124 in 17–22)) indicated preferential binding to a specific region in the humanp53.Blinddockingofknownp53reactivationcompounds mousep53coredomaincrystalstructure(PDBID3EXJ30),which onto the entire protein surface of the human p53 core domain has high sequence identity (B90%) to human p53. The crystalstructurePDBID1TSRchainB(1TSR-B)33indicatedthat corresponding region in the human p53 core domain is flanked noneofthecompoundsboundincloseproximitytoanycysteine, by loop L1 and sheet S3 (hence, the L1/S3 pocket). The region including those in the L1/S3 pocket (Supplementary Fig. S1). had been labelled by genetic mutation studies10–16 as highly However, the L1 loop can undergo a conformational switch to enriched for p53 reactivation mutations (Fig. 1; Phe113, Leu114, regulate DNA binding by an induced fit mechanism35,36. NMR His115, Thr123, Leu137 and Asn235), indicating that subtle studies demonstrate that Cys124 is exposed to solvent B5% of structural changes in this region can reactivate p53 cancer the time37. Mass spectrometry results indicate that Cys124 and mutants. Four of those reactivation mutation sites (Phe113, Cys141 react preferentially with alkylating agents32 and with Leu114, His115 and Thr123) plus Cys124 exhibit significant or glutathione38. Alkylating agents cause NMR chemical shifts of moderate nuclear magnetic resonance (NMR) chemical shifts in several residues within the L1/S3 region32, including Leu114, responsetobindingofthep53-stabilizingpeptideCDB3(ref.31). His115 and Thr123, already implicated above by genetic Cys124, Cys135 and Cys141 are near the centre of this putative mutations and CDB3-induced NMR chemical shifts. 2 NATURECOMMUNICATIONS|4:1407|DOI:10.1038/ncomms2361|www.nature.com/naturecommunications &2013MacmillanPublishersLimited.Allrightsreserved. ARTICLE NATURECOMMUNICATIONS|DOI:10.1038/ncomms2361 Table1| Summaryof MDsimulation trajectories andopen pocket occurrences. wtp53 R175H G245S R273H C124A Totalnumberofclustersintrajectory 28 39 74 41 50 Openpocketas%oftotaltrajectorybygeometriccriteria 6.3 7.3 6.7 5.0 5.4 Openpocketas%oftotaltrajectorybyFpocket43 27.3 29.9 22.9 7.3 35.3 Avg.SASAÅ2±s.d.ofCys124sidechaininMD 10.93±4.81 9.58±4.45 6.94±4.71 8.38±5.84 (124Alavalue)4.45±2.99 Cys124exposureas%ofMDframeswithSASA45Å2 90.80 86.97 60.70 64.97 (124Alavalue)34.20 Avg.SASAÅ2±s.d.ofCys141sidechaininMD 0.51±0.84 1.03±1.27 0.56±0.86 0.78±1.32 1.56±1.54 Cys141exposureas%ofMDframeswithSASA45Å2 0.33 1.53 0.43 2.06 3.00 Avg.SASAÅ2±s.d.ofCys135sidechaininMD 0.17±0.48 0.41±0.91 0.09±0.27 0.09±0.34 0.20±0.44 Cys135exposureas%ofMDframeswithSASA45Å2 0.06 0.50 0.00 0.00 0.03 MD,moleculardynamics;SASA,solvent-accessiblesurfacearea. Wild-type p53 is marginally stable at physiological temperature. The DNA binding domain unfolds with a half-life of around 9min3 and has a low melting temperature (T ) of m about 36–461C depending on experimental conditions39–41. All- atom explicit solvent MD simulations for 30ns of wild-type p53 and three frequent cancer mutants, R175H, G245S and R273H, revealed a high degree of flexibility for the core domain42 and particularly the L1/S3 region surrounding Cys124 (Supplementary Movie 1). Clustering the MD ensembles with respect to the L1/S3 pocket conformation further demonstrated the flexibility of the region (Table 1). In the MD ensembles of different p53 variants, average solvent-accessible surface area (SASA) values of the Cys124 side chain were calculated to be in therangeof6–11Å2(Table1).Insharpcontrast,inthep53core domaincrystalstructure1TSR-BtheCys124sidechainSASAwas calculated to be only 0.43Å2. DockingintotheL1/S3pocket.AtransientlyopenL1/S3pocket formed around Cys124 due to positional and conformational changesofSer116,Thr123,Cys124,Thr140andespeciallyLeu114 (Fig. 1). Three of these residues, Leu114, Thr123 and Cys124, already were implicated above. We determined five distance/ dihedral angle criteria (Supplementary Methods) that indicated formation of an open L1/S3 pocket in about 5–8% of each simulation (Table 1). Fpocket43, a program to measure the volume of a defined binding pocket (Fig. 1), also identified an open L1/S3 pocket around Cys124 across several p53 variants in 5–30% of the 3,000 frames of each MD trajectory (Table 1). For evaluatingFpocketresults,theL1/S3pocketwasconsideredopen if its volume was 4150Å3, a lower bound chosen based on cancer mutant R273H, which exhibited thelowest average L1/S3 pocket volumes. FTMap44, a program to identify ligand-binding hot spots in proteins using organic solvent probes, predicted the L1/S3 pocket to be among the most highly occupied by the solventprobeswhenusedtoassessdruggabilityofMD-generated Figure2|Knownp53reactivationcompoundsdockedintotheopenL1/ conformations (Fig. 1). For wt p53 and mutant R273H MD S3pocketofR175H.(a)MQ(fromPRIMA-1)26,(b)NB21,(c)STIMA-1(ref. trajectories,FTMappredictedadruggableL1/S3pockettooccur, 22),(d)MIRA-1(ref.19),(e)MIRA-2(ref.19),(f)MIRA-3(ref.19).Known respectively, in 11 and 7 of the 15 most-populated cluster p53reactioncompoundscoulddockfavourablyintothemost-populated centroids. In contrast, neither Cys124 nor any other cysteine in R175HMDtrajectoryclustercentroidthathadanopenL1/S3pocket.Allof the original PDB crystal structure 1TSR-B33 was identified as a theninedockingposesgeneratedbyAutodockVinaforeachcompound druggable site by FTMap. abovescoredwithinthepublishedstandarderrorofAutodockVinadocking Several previously identified alkylating p53 reactivation scores60(SupplementaryTableS1).Ineachcase,thebindingposedepicted compounds, MQ26, NB21, STIMA-1(ref. 22) and MIRA-1, 2, abovehadthesmallestdistancebetweenthereactivemethyleneofthesmall 3 (ref. 19), subsequently were docked into the most-populated moleculeandtheCys124sulphydrylgroup.Theproteinsurface MD trajectory cluster representative that had an open L1/S3 representationispurple,exceptCys124atomsarecolouredbyatomtypeas bindingpocketasdefined(Table1,SupplementaryMethods).All inFig.1a,b. of these known active compounds presented low-energy predicted docking poses with the reactive methylene oriented in corresponding ligand interaction diagrams, and Supplementary close proximity to the Cys124 sulphydryl group for p53 cancer TableS1providesthecorrespondingdockingstatistics.Reliability mutant R175H (Fig. 2). Supplementary Fig. S2 depicts the of the molecular docking strategy was supported by a positive NATURECOMMUNICATIONS|4:1407|DOI:10.1038/ncomms2361|www.nature.com/naturecommunications 3 &2013MacmillanPublishersLimited.Allrightsreserved. ARTICLE NATURECOMMUNICATIONS|DOI:10.1038/ncomms2361 control, PhiKan083 (ref. 23), which docked within 1.0Å root- L1/S3pocketidentifiesanovelp53reactivationcompound.An mean-square-deviation(RMSD)ofthereferencecrystalstructure ensemble-basedvirtualscreeningapproach,knownastherelaxed (Supplementary Fig. S1). The transiently open L1/S3 pocket was complex scheme28,29, was performed against the mutant R273H. sharedacrosswild-typeandthethreep53cancermutantsstudied Initially, 1,324 compounds from the NCI/DTP Open Chemical (SupplementaryFig.S3).Thus,severallinesofevidencesuggested RepositoryDiversitySetIIwerevirtuallyscreened(TheNCI/DTP a transiently open and druggable binding pocket in the L1/S3 Open Chemical Repository, http://dtp.cancer.gov). They were region of the human p53 protein. docked into each of the most-populated 15 cluster centroids— altogether representing 92.5% of the entire trajectory—obtained by clustering the MD trajectory of the R273H cancer mutant Biological validation of the L1/S3 binding pocket hypothesis. according to the L1/S3 pocket conformation. Compounds with Weexamined theroleof Cys124intheL1/S3bindingpocketby predicted binding affinities of (cid:2)6.5kcalmol(cid:2)1 or better to any of the 15 centroids were chosen with a limit of 50 compounds site-directed mutagenesis of Cys124 to alanine (C124A). If Cys124were acritical residuefor p53reactivation, then removal fromeachcentroid.Theresulting84compounds(corresponding to B6% of the entire NCIDS2 database) were ranked according of its thiol group by this otherwise innocuous mutation would abolish the PRIMA-1 reactivation effect. For example, Cys124 to their population-weighted average binding affinities. The absorption, distribution, metabolism, and excretion (ADME) might be a key attachment residue for PRIMA-1 conversion products such as MQ26, it might initiate a Cys124-Cys141- properties of the compounds, as predicted by Schrodinger Cys135 alkylation cascade32, or it might form a disulphide bond (QikProp, version 3.3, Schro¨dinger, LLC, New York, NY, 2010), that stabilized p53 in an active conformation induced by were used for further filtering. Lipinski’s Rule of Five and Jorgensen’s Rule of Three were followed strictly, resulting in 24 compound binding. The literature suggests that a reducing environment leads to correct p53 folding and disulphide bond compounds.Similarly,compoundsfromtheNCIMechanisticSet, formationmayleadtoaggregation27.Thereisnoapriori reason NCINaturalProductsSet,NCICOMBOSet,andNCIOncology- Approved Set (consisting of 974 compounds in total) were to rule out any of these hypotheses. virtually screened and filtered for ADME properties. A more p53 null human osteosarcoma Saos-2 cells were engineered to havedoxycycline-inducible expression of eitherwild-typep53 or stringent ADME filter (octanol/water partition coefficient o3) was enforced to improve compound solubility. A similar various p53 mutants. Single cloneswith similar expression levels predicted binding affinity cutoff of (cid:2)6.5kcalmol(cid:2)1 was used, of the different p53 variants were selected for direct comparison resultingin24additionalcompounds.Threeselectedcompounds of small-molecule effects (Supplementary Fig. S4). As expected, were discarded because they were unavailable (NSC-653010, expression of wild-type p53 in Saos-2 cells halted cell NSC-92339 and NSC-653016). In total, 45 compounds were proliferation, whereas expression of mutant R175H had no selected for biological assay (Supplementary Tables S2 and S3). effectoncellproliferation(Fig.3).MutationofCys124toalanine One of these compounds, stictic acid (NSC-87511), proved to had little effect on otherwise wild-type p53 (C124A) nor did it be a p53 reactivation compound. Figure 4 illustrates the best- restore activity of R175H (R175H_C124A), indicating that the scoringsticticacidposewhendockedintotheL1/S3pocketsofwt C124A mutation is largely neutral for general p53 function. Consistent with previous results26, addition of PRIMA-1 to cells p53 and mutants R175H, R273H and G245S. Supplementary expressing inactive mutant R175H led to p53 reactivation and subsequent inhibition of cell cycle progression. Importantly, PRIMA-1reactivationofp53functionwasblockedinthedouble mutantR175H_C124A(Fig.3),demonstratingtheimportanceof Cys124 in pharmacological reactivation of mutant R175H by PRIMA-1. These experimental results supported the computational identification of the L1/S3 binding pocket surrounding Cys124 as significant for p53 reactivation. 20 n se i2 h 15 a7 e increumber 10 vn elaticell 5 R 0 PRIMA-1 + – + – + – + – + – p w C R CR 5 t 1 1 11 3 2 7 27 null 4A 5H 4A5H Figure3|PRIMA-1actsthroughcysteine124inp53.p53nullSaos-2cells Figure4|SticticaciddockedintoopenL1/S3pocketofp53variants. expressingwild-typep53,ortheindicatedp53mutants,weretreatedwith SticticacidcoulddockfavourablyintotheopenL1/S3pocketof 50mMpreheatedPRIMA-1(bluebar)orthemediumwithoutPRIMA-1 MD-generatedsnapshotsforallfourp53variantsstudied:(a)wtp53; (DMSO,greenbar)for72h.Theincreaseincellnumberduring72hof (b)R175H;(c)R273H;(d)G245S.Onlypolarhydrogensofsticticacidare growthisshown.Thes.d.representfourindependentsamples. depictedhere.ColoursareasinFig.2. 4 NATURECOMMUNICATIONS|4:1407|DOI:10.1038/ncomms2361|www.nature.com/naturecommunications &2013MacmillanPublishersLimited.Allrightsreserved. ARTICLE NATURECOMMUNICATIONS|DOI:10.1038/ncomms2361 Figure S5 shows how stictic acid ranked on a histogram of best specificmannerasexpected25(Fig.6a).Activationofp21reporter dockingscoresofthescreenedcompoundsusingmutantR273H, transcription was more pronounced and confirmed that stictic and Supplementary Fig. S6 compares docking scores between acid is a p53 mutant reactivation compound comparable to mutants R273H and R175H (correlation coefficient¼0.80). The previously identified compounds. predicted binding affinities, z-scores, mean and standard Differential scanning fluorimetry (DSF) provides the ability to deviation for the nine docked poses of stictic acid with mutant detect molecular interactions between a small molecule and a R175H are presented in Supplementary Table S1. To gauge the proteinbasedonchangesinthemeltingtemperature(T )ofthe m stability of stictic acid in the L1/S3 active site, a MD simulation protein46. These T changes are taken to reflect changes in m was performed starting from the best-scoring docking pose of protein stability upon binding of thesmall molecule. Variants of stictic acid in mutant R175H. The initial docking score was the p53 core domain (wild type, G245S and R175H) were tested (cid:2)6.97 and the final docking score was (cid:2)7.11. Supplementary in DSF assays with a range of concentrations of PRIMA-1, MQ FiguresS7andS8showthatthep53coredomainwasstableand and stictic acid (Fig. 7). The T values in the absence of m stictic acid persisted in the L1/S3 pocket throughout the entire compounds for wild type, G245S and R175H, at 4mM, were 60ns MD simulation. Supplementary Figure S9 compares the 36.54±0.11, 33.51±0.09 and 27.89±0.111C, respectively. posesanddetailedmolecularinteractionsofsticticaciddockedto PRIMA-1 and MQ stabilized each of the p53 variants by mutantR175HinthedockedposeofFig.4bandagainafter60ns Br11 for concentrations ranging from 10 to 80mM, 2.5(cid:3) to of MD simulation. 20(cid:3) stoichiometric ratio of compound to protein (Fig. 7). The greatestthermalstabilizationwasobservedwithsticticacid,upto 4.60±0.391C at 80mM in mutant R175H. All three of these Experimental support for stictic acid and p53 reactivation. compounds demonstrated a relative dose dependence in their Stictic acid partially restored p53 activity in human Saos-2 cells abilitytostabilizep53.Noneofthesecompoundshadstabilizing expressing cancer mutant R175H (Fig. 5), as demonstrated by effectsonthreecontrolproteinstested,annexinA2,S100A4and induction of the cell cycle inhibitor p21. p21 is a canonical gene S100A10, suggesting that their interactions are specific to p53. target of active p53 and a sensitive and selective output for p53 activity. Induction of p21 by stictic acid was dose-responsive, as shown in Fig. 5. It was also dependent upon p53, because it had Discussion onlyaminoreffectonp21expressionincellslackingp53(Fig.5, Despite continuous progress in cancer research and care, mil- Supplementary Fig. S4). lions of people die annually from this disease. Therapeutic reac- p53 primarily functions as a transcriptional activator. To test tivationofp53couldpreventordelaymanyofthesedeaths.The moredirectlytheeffectofsticticacidonrestoringtranscriptional p53Y220Creactivationpocketalreadyhasbeenusedforrational activator function of p53 mutants we generated stable cell lines drugdesignanddiscoveryinthatspecificmutation23,24.Herewe harbouring reporter constructs driven by two different p53- reportcomputer-guidedidentificationofatransientlyopenL1/S3 dependentpromoterelements.Theseelementswerederivedfrom thepromotersofthecellcycleinhibitorp21andtheproapoptotic gene PUMA and have previously been utilized to monitor p53 a 3 PUMA transactivationactivity45.Wecomparedtheeffectofsticticacidto that of PRIMA-1 and the recently identified allele-specific p53 nt 2.5 DMSO e rcpreeo5apm3cotprimtvoeauurtntiPoadnUnstMsmcAoRodm,1ee7psx5tocHlyuepnbtadunNtdSNsCiGgS-nC23i4-1fi359c1S7a92n75tto2l,y5werhex(siprctreohefr.saesdc2ttet5hdh;eeinFapibragion.laitpmy6o)uop.tftaotnAthitlce-l p53-dependactivation1.152 SBNtoSiciCltei3cd 1 ap9cr7iimd25a-1 Rel. 0.5 0 0.8 R175H G245S R175H mutant p53null cells b p21 0.6 10 els ent 8 DMSO p21 Lev00..42 p53-dependactivation 46 SBNtoSiciCltei3cd 1 ap9cr7iimd25a-1 el. 2 R 0 0 R175H G245S 0 5 10 40 50 Stictic acid (µM) Figure6|p53-dependentactivationofPUMAandp21transcription reporterbyreactivationcompounds.Preheated26PRIMA-1(25mM), Figure5|Dose-dependentp21activationinresponsetosticticacid. NSC-319425(25mM)andsticticacid(10mM)wereaddedtostableSoas-2 Saos-2cells(p53null)andSaos-2cellsstablyexpressingthep53cancer (p53null)celllinesharbouring(a)PUMA-or(b)p21-dependentluciferase mutantR175Hweretreatedwithdoxycyclinefor8htoinduceexpressionof reporterandexpressingthep53mutantsR175HorG245Sasindicated. mutantR175H.Cellswerethengrownfor48hinthepresenceofsticticacid ActivationofPUMAandp21transcriptionalreporterwasmeasuredby attheconcentrationsindicated.p21expressionwasquantifiedusingaFuji luciferaseactivityassays.Reportercelllineswithoutp53expressionwere LAS-4000imagingsystemandplottednormalizedtotheexpressionof processedinparallelandusedfornormalizationtovisualizep53-dependent tubulinineachsample. effects.Dataarerepresentedasmean±s.d.(n¼4). NATURECOMMUNICATIONS|4:1407|DOI:10.1038/ncomms2361|www.nature.com/naturecommunications 5 &2013MacmillanPublishersLimited.Allrightsreserved. ARTICLE NATURECOMMUNICATIONS|DOI:10.1038/ncomms2361 Wild Type G245S R175H 43.0 40.0 34.0 42.0 39.0 33.0 C) e (° 41.0 38.0 32.0 ur 40.0 37.0 31.0 at er 39.0 36.0 30.0 p m 38.0 35.0 29.0 e T 37.0 34.0 28.0 36.0 33.0 27.0 0 20 40 60 80 0 20 40 60 80 0 20 40 60 80 (0:1) (5:1) (10:1) (15:1) (20:1) (0:1) (5:1) (10:1) (15:1) (20:1) (0:1) (5:1) (10:1) (15:1) (20:1) Compound concentration (µM) (Stoichiometric ratio of compound:protein concentrations) Figure7|Thermalstabilizationofp53mutantsbyreactivationcompounds.SelectedconcentrationsofPRIMA-1(blue,square),MQ(green,circle)and sticticacid(red,triangle)wereaddedto4mMofwildtype,G245SandR175Hcoredomainprotein.ThermalstabilizationwasmeasuredusingDSF.Data pointsareplottedasthemeanofsextupletmeasurements,withcorresponding95%confidenceintervals.Confidenceintervalbarsnotvisiblearesmaller thanthesymbolusedtoplotthedatapoint.PRIMA-1andMQstabilizedeachp53variantabout11Corlessoverthisrangeofconcentrations.Sticticacid resultedinthegreateststabilizationforbothp53mutantsstudied. reactivation pocket in p53 that may present a more broadly crucialLeu114residue.AsuitableLeu114conformationoccurred applicable druggable region for such cancer therapies. The in only three or four frames of the entire 3,000-frame 30-ns coordinates of the human p53 core domain structures with the trajectory (Methods, RMSD-based clustering). The sampling in open binding pocket conformations shown in Fig. 4 appear as MDislimited,sothefactthatanysuitablepocket-openingevents Supplementary Data S1, and also have been deposited in the were seen at all is indication that such pockets exist at thermal Protein Model DataBase (PMDB)47 (http://mi.caspur.it/PMDB/; equilibriumforthismutant.Indeed,threeoccurrencesin30nsis PMDBID(a)PM0078199forwtp53;(b)PM0078200forR175H; equivalent to 108 occurrences per second, whereas three (c) PM0078201 for G245S; and (d) PM0078202 for R273H) and occurrences in 3,000 frames is equivalent to a probability of inSourceForge (http://sourceforge.net/projects/p53cancerrescue/, 10(cid:2)3,andsotheeventcannotbeconsideredrare.Instead,wesee in folder ‘Coordinates of p53 core domain’). We anticipate that here a limitation of our current computational methods for theL1/S3reactivationregionreportedherewillbeusefultoother modelling complex molecular processes. researchers carrying out structure-based drug discovery and AsseeninSupplementaryFigsS7andS9,sticticacidremained development of p53 reactivation drug leads. dockedafter60nsofstableMDsimulation.Therotamerstateof AnotableadvantageoftheL1/S3pocketisthatitoccursacross Leu114 was critical toopening upa binding site largeenoughto severalp53variants,asseeninFig.4andSupplementaryFigsS3 accommodate large molecules such as stictic acid. In the initial and S6, giving hope that p53 reactivation compounds can be dockedposeofsticticacid(SupplementaryFig.S9a),thereisonly developedtotargetseveralp53cancermutantssimultaneously.In one direct H-bond interaction between stictic acid and the contrast, for example, known compounds that target the p53 Cys124 backbone amino group, in addition to various Y220C reactivation pocket23,24 may be specific to the Y220C hydrophobic interactions including Pro142 and Leu114 mutant,becausespecificstructuraldetailsoftheYtoCmutation (Supplementary Fig. S9c). The hydrophobic interactions with were used in their design or discovery. None of the R175H, Pro142 and Leu114 were conserved throughout the simulation. G245SorR273HmutationslieintheL1/S3pocketorhavedirect The final pose (Supplementary Fig. S9b) provides an elegant effects on its conformation. Its generalizability is illustrated here illustrationofinducedfituponbinding.Sticticacidmoveddeeper by the result that virtual screening against one mutant, R273H, into the pocket, achieved a very nice shape complementarity, produced a compound that resulted in biological validation substantially expanded the initial network of favourable direct againstadifferentmutant,R175H,andinducedDSFtemperature and water-mediated interactions, and shifted the ligand and shifts in all p53 variants studied. receptor exposure patterns (Supplementary Fig. S9d). Protein conformational flexibility is well-recognized as an PRIMA-1hasconversionproductsthataremoreactivethanit important factor in ligand binding. A few computational drug is itself26, and this may be the case for stictic acid as well. The discovery approaches attempt to accommodate protein-induced existence of a highly active and bioavailable stictic acid fitonligandbindingbyallowingsidechainstomovetoimprove decomposition product was suggested by initial experiments the fit of the ligand into the binding pocket. Very few such carried out with a stictic acid solution that had a long storage approachesallowtheproteinbackbonetomovetoaccommodate time. Suchhypothetical conversion products werenotpresent in the ligand. Nevertheless, the results above provide a cautionary thefreshlyorderednewlydissolvedpurecompound,fromwhich tale: a ligand-binding pocket of medical importance may be the results presented here were derived. hiddenanddifficulttorecognizeinstructuraldatabases,yetother It is unclear whether or not stictic acid requires covalent virtual structures extracted from its conformational ensemble linkage to p53 for reactivation according to the general cysteine may support successful structure-based drug discovery. With alkylation mechanism proposed by Lambert et al.26 for several appropriate protein conformations in hand for computational otherp53reactivationcompounds.Sticticacidmay,inprinciple, analysis, we screened only 45 compounds through biological bindcovalentlytonucleophilicproteinsidechainsbyacylatingor assays to find a novel p53 reactivation compound, stictic acid. alkylating nucleophilic residues such as cysteine. Likely reaction Our relaxed complex scheme28,29 clusters are based on sitesandmodesofreactivity(SupplementaryFig.S10)includethe conformations of all residues surrounding the L1/S3 pocket, not direct addition of a nucleophile (a cysteine thiol group of the on specific conformations of particular residues. No cluster protein, as represented in the figure) to either the seven- centroidproducedasuitabledockingposeforsticticaciddocked membered ring lactone carbonyl group (A) or to the carbonyl to G245S (Fig. 4d), due to the position and rotamer state of the group of the five-membered ring lactone (B), resulting in 6 NATURECOMMUNICATIONS|4:1407|DOI:10.1038/ncomms2361|www.nature.com/naturecommunications &2013MacmillanPublishersLimited.Allrightsreserved. ARTICLE NATURECOMMUNICATIONS|DOI:10.1038/ncomms2361 acylation of the thiol and covalent attachment to the protein as druggable protein regions, and highlight the feasibility of using the respective thioester. Alkylation is another possible MD simulations to expose druggable protein regions that mechanism, occurring via a more circuitous mechanism (C) in otherwise may not be evident. which dehydration generates a reactive quinone methide-type speciesthatcanalkylatenucleophiles,asillustratedschematically for a p53 cysteine side chain thiol group. An alternative Methods dehydration pathway (loss of a proton on the para-methyl MDsimulations.Wild-typep53MDsimulationswereperformedusingcrystal group,notshown)couldproduceadifferentmethidethatwould structure1TSR-B33fortheinitialcoordinates.ModelsformutantsR273H,R175H, G245SandC124Awerepreparedbyvirtualmutationofwild-typep53usingthe resultinalkylationatthecorrespondingbenzylicposition.There AMBER10suite48.Thecrystallographicwatermoleculeswereretainedandeach is no a priori reason to rule out any of these pathways. systemwassolvatedinaTIP3Pwaterbox49.Zinc-coordinatingresidueswere InDSFexperiments,preheatedPRIMA-1(toinduceformation modelledusingthecationicdummyatommodel50.Protonationstatesoftitratable of conversion products26) induced thermal shifts (T increases) residuesweredeterminedusingtheWhatifWebInterface51.Histidine,asparagine m andglutaminesidechainorientationswerecorrectedasneededusingthe that were slightly higher than that for MQ. Though slight, the Molprobitywebserver52.Eachsystemwasneutralizedbyaddingchlorideionsas differences were statistically significant at higher concentrations, needed.Thestructurefilesofeachsystemconsistedofabout27,260atoms,which whichisconsistentwiththepreviousevidencethatMQisnotthe werepreparedusingtheAmberFF99SBforcefield53. mostactiveconversionproductofPRIMA-1(ref.26).Thesetwo Eachofthep53variantsystemswasfirstrelaxedusing36,000stepsof minimizationfollowedbyfourconsecutiverestrained250psMDsimulations. known reactivation compounds showed significantly lower Thereafter,30nsunrestrainedMDsimulationwasperformedat310Kand1atm stabilizing effects on the p53 mutants tested than did stictic foreachsystemusingtheNAMD2.7suite54.DetailsoftheminimizationandMD acid. Stictic acid is a much larger molecule than MQ. It has the simulationprotocolcanbefoundinDemiretal.42 potential to make more interactions within the binding pocket Togaugethestabilityofthesticticacidinthebindingpocket,a60nsMD simulationwasperformed.Thebest-scoringdockedposeofthemoleculeinthe (compareFigs2with4),perhapsgivingitagreatercapacitythan R175HL1/S3open-pocketconformationwasusedasthestartinggeometry PRIMA-1 or MQ for stabilizing p53 cancer mutants. We cannot (Fig.4b,SupplementaryTableS1).Sticticacidparametersweregeneratedwiththe rule out other effects, for example, the possibility that the low AntechambermoduleofAmber10usingtheGeneralizedAmberForceField55,56 thermal shifts for PRIMA-1 may be due to its incomplete withRESPHF6-31G*charges. conversion into more active products, or that the low thermal Foreachp53variantstudied,thesolvent-accessiblesurfaceareaoftheCys124 sidechainovertheMDtrajectorywascalculatedusingacustomizedvisual shiftsforMQmaybeduetoitshighlyreactivenatureleadingto moleculardynamics57(VMD)script. rapid decomposition on contact with water. Thecoordinatesofthehumanp53coredomainstructureswiththeopen- Sticticaciddisplayedpromisingresultsinreactivatingseverely bindingpocketconformationsshowninFig.4appearasSupplementaryDataS1, destabilized mutant R175H in human cancer cells. Reactivation andalsohavebeendepositedinthePMDB47(http://mi.caspur.it/PMDB/;PMDB ID(a)PM0078199forwtp53;(b)PM0078200forR175H;(c)PM0078201for was evident from dose-dependent and p53-dependent induction G245S;and(d)PM0078202forR273H)andinSourceForge(http:// of p21 expression. Cell death was not activated by stictic acid, sourceforge.net/projects/p53cancerrescue/,infolder‘Coordinatesofp53core which may be due to insufficient reactivation of cancer mutant domain’). R175H or may indicate pathway-selective restoration of p53 activity. Such probes with pathway discriminatory activity will become valuable tools for the study of p53 biology. PUMA RMSD-basedclustering.Proteinsnapshotsextractedfromthesimulationswere reporter assays demonstrated comparable p53 reactivation by clusteredwithrespecttoallheavyatomsoftheL1/S3site.Foreachvariant,atomic coordinateswereextractedat10psintervalsovertheir30nsMDtrajectory, stictic acid and PRIMA-1 (Fig. 6), yet PRIMA-1 is a potent resultingin3,000simulatedstructurespertrajectory.These3,000structureswere inducer of apoptosis in cells with mutant p53. It is possible that superimposedwithrespecttoallCaatomstoremoveoveralltranslationand additional, p53-independent cytotoxic functions of PRIMA-1 or rotation.Theywerethenclusteredusingthegromosalgorithm58intheGROMACS one of its degradation products26 act synergistically with p53 4.0.5program59atanRMSDcutoffvalueof1.65Å,basedonatomiccoordinatesof allatomsofthoseresiduesthathadatleastoneatomwithin10ÅofCys124inthe reactivationtoinduceapoptosis.Suchadditiveeffectsmaynotbe minimizedandequilibratedformofeachp53variant.Ineachcluster,thestructure induced by stictic acid. withthesmallestaverageRMSDtoalltheotherstructuresintheclusterwas MutantR175Hshowedagreaterdegreeofthermalstabilization designatedasthe‘centroid’or‘representative’structureofthecluster. inDSFbysticticacidthandidwildtypeorG245S.Perhaps,thisis ClustercentroidsexhibitingopenL1/S3pocketswereidentifiedforeachp53 variantusingthegeometriccriteria(SupplementaryMethods).Theseopen because R175H is initially highly destabilized (a Zn region centroidswereusedfordockingsticticacidandtheknownp53reactivatingsmall mutant, 30% folded at 371C40) while wild type and G245S (a molecules.InthecaseofG245S,theknownsmallmoleculesweresuccessfully DNAregionmutant,95%foldedat371C40)arenot.Theseresults dockedintotheclustercentroidwithanidentifiedopenL1/S3pocket.However,it indicate that stabilization effects and reactivation outcome wasnotpossibletoidentifyaclustercentroidforG245Sthatproducedabinding poseforsticticacid(arelativelymuchlargermolecule)inwhichapossible depend on the p53 mutation, and that thermal stabilization of alkylationreactionwiththeCys124sidechainseemedreasonable.Acloserlookat the p53 core domain may reactivate some p53-controlled theG245SMDtrajectoryrevealedthatthepositionandrotamerstateofLeu114 pathways and not others in a way that depends on the ligand. wascriticalforL1/S3pocketopening.Leu114,alreadyimplicatedabove,exhibiteda DSFinvitroexperimentsindicateddirectbindingofsticticacid favourableconformationinonlythreeorfourframesoftheentire3,000-frame to all p53 variants tested. Induction of p21 expression by stictic trajectory.Thus,asnapshotwithanopenL1/S3pocketwasextractedmanually fromtheG245SMDtrajectoryandsubsequentlyusedtodocksticticacid. acid showeddependence on p53-mediated pathways, because no such induction was observed in the Saos-2 parent cell lines lacking p53. Taken together, these in vitro and in cellulo results Insilicodocking.InitialdockingstudieswereperformedusingAutoDock4.2.2 indicate that stictic acid acts directly on p53. (SMILESstringsforallsmallmoleculesconsideredexplicitlyinthispaperaregiven Recently, two compounds from the thiosemicarbazone family inSupplementaryTableS4).AllsubsequentdockingstudiesusedAutoDockVina60 (for example, NSC-319725) were identified as allele-selective withanexhaustivenessvalueof100anda20(cid:3)20(cid:3)20Åsearchspacecentredon reactivation compounds for p53 cancer mutant R175H25. thesulphuratomofCys124.Ninedifferentdockingposeswerecalculatedforeach consideredcombinationofacompoundandap53variant.Forinitialcompound Whether these compounds directly bind to p53 and target the scoring,population-weightedaveragebindingaffinitiesofthemost-populated15 L1/S3 reactivation pocket identified in this study is currently clustercentroidsfromtheR273HMDtrajectorywerecalculatedusingthebest unclear, but will be interesting questions to address in future bindingaffinityfoundbyAutodockVinaforeachcompound.The48compounds experiments. selectedwerere-scoredusingthepopulation-weightedaveragebindingaffinitiesof themost-populated30clustercentroids.Ligandinteractiondiagramswere Our results demonstrate the value of integrated strategies preparedusingtheMolecularOperatingEnvironmentprogram(Chemical combining genetics and computation for identification of ComputingGroupInc.,Montreal,Canada). NATURECOMMUNICATIONS|4:1407|DOI:10.1038/ncomms2361|www.nature.com/naturecommunications 7 &2013MacmillanPublishersLimited.Allrightsreserved. ARTICLE NATURECOMMUNICATIONS|DOI:10.1038/ncomms2361 ComputationalfragmentmappingusingFTMap.TheFTMapprogram44utilizes 16,530cm(cid:2)1M(cid:2)1at280nm.Allproteinpurificationstepsweremonitored 16probemoleculestoidentifyandrankthemostenergeticallyfavourablebinding by4–12%Tris-GlycineSDS–PAGE(Lonza,Basel,Switzerland)toensuretheywere pocketsonaproteinsurface.Forthispurpose,FTMapfirstperformsrigidbody virtuallyhomogeneous.AllchemicalsandsolventswereanalyticalandHPLC dockingofprobemoleculeswithafastFouriertransformmethod,thenminimizes grade,respectively. andrescoresthedockedposes.Next,itclustersthemforeachprobeusingasimple greedyalgorithm,andfinallylocatestheconsensussitesofbindingpockets identifiedbyallprobes. Differentialscanningfluorimetry(DSF).Purifiedp53protein(0.22mMin 50mMHEPESatpH7.5,150mMNaCl,0.1mMdithiothreitol)wasdilutedto 4mMfinalconcentrationin20mMHEPESatpH7.5.Compoundsweredissolved Celllines.Soas-2cellswereobtainedfromtheAmericanTypeCultureCollection inDMSOtovariousconcentrationsandaddedtodilutedproteinforovernight (Manassas,VA,USA).Theyweremaintainedat371CinDMEMhighglucose incubationat41C.AnequivalentvolumeofDMSOwasusedasacontrolandalso supplementedwith10%FBS,penicillinGsodium(100unitsml(cid:2)1)andstrepto- incubatedovernightat41C.PRIMA-1inDMSOwaspreheatedat901Cfor20min mycin(100mgml(cid:2)1). andcooledtoroomtemperaturebeforeuse26.AnnexinA2,S100A4andS100A10 StableSoas-2celllinesharbouringdoxycycline-induciblep53wildtypeor wereusedascontrolproteinstoruleoutnonspecificinteractionsbetween mutantswereestablishedbyalentivirus-basedstrategy.Humanp53geneswere compoundsandp53.SyproOrangestain(Bio-Rad,Hercules,CA)at5,000(cid:3) stock clonedasSacI/PstIfragmentsintopEN_TmiRc3,replacingGFPandccdBgenesin concentrationwasdilutedin20mMHEPESatpH7.5andaddedtoeachwellfora theplasmid.Recombinationofp53-pEN_TmiRc3andthelentivirusvectorpSlik final5(cid:3) concentration.Eachproteinandcompoundconditionwastestedas wasperformedusingtheLRClonaseEnzymeMix(Invitrogen,Carlsbad,CA) replicatesof6with20mlperwellofa96-wellplate.DSFwasperformedonwild- accordingtomanufacturer’sinstructions.Lentivirusesweregeneratedbyco- typep53andmutantG245SusingtheCFX96TouchRT–PCRsystem(Bio-Rad)by transfecting5mgoflentiviralvectorpSlikand5mgofeachpackagingvector increasingthetemperatureoftheplate0.51Cperminfrom25to52.51C.DSF (codingforGag,Pol,Tat,RevandVSVG)in90%confluent293Tcellsin10-cm performedonmutantR175Hwasidenticalexceptthatthestartingtemperature platesusingLipofectamine2000(Invitrogen,Carlsbad,CA).Supernatantswere was101C.Fluorescencemeasurementsweretakenonceeveryminuteduringall collected48haftertransfectionanduseddirectlytoinfectSoas-2cells.Forty-eight experiments.T valuesforeachwell,meanT values,and95%confidence m m hoursafterthisinfection,theSoas-2cultureswereswitchedtohygromycin intervalswerecalculatedwiththeprogramPrism5(GraphPadSoftware,LaJolla, B-containingmedia.Toisolatesinglep53-expressingclones,cellswereinduced CA)byfittingtherawfluorescencedatatoaBoltzmannsigmoidalcurve. withdoxycyclineandtestedbyimmunoblotting.Doxycyclinewasusedata concentrationof1mgml(cid:2)1,hygromycinBat50mgml(cid:2)1. Forgenerationofstablecelllinestomeasurep53-dependentactivationofp21 References orPUMAreporters,p21(50-GAAGAAGACTGGGCATGTCT-30)orPUMA 1. Olivier,M.etal.TheIARCTP53database:newonlinemutationanalysisand (50-CTGCAAGTCCTGACTTGTCC-30)responseelements45followedbya recommendationstousers.Hum.Mutat.19,607–614(2002). minimalpromoter(50-TAGAGGGTATATAATGGAAGCTCGACTTCCAG-30) 2. Soussi,T.&Beroud,C.AssessingTP53statusinhumantumourstoevaluate wereinsertedintoKpnI/XhoIcutplasmidpGL4.10(Promega).Theseelements clinicaloutcome.Nat.Rev.Cancer1,233–240(2001). controltheexpressionofasyntheticfireflyluc2(Photinuspyralis)gene.ASV40- 3. Joerger,A.C.&Fersht,A.R.Thetumorsuppressorp53:fromstructuresto drivenpuromycinresistancecassettewasinsertedintothePst1siteofpGl4.10to drugdiscovery.ColdSpringHarb.Persp.Biol.2,a000919(2010). enablegenerationofstablecelllines.ThePUMAandp21reportervectorswere 4. Martins,C.P.,Brown-Swigart,L.&Evan,G.I.Modelingthetherapeutic transfectedintoSoas-2cellsandsinglecoloniesresistantto50mgml(cid:2)1puromycin efficacyofp53restorationintumors.Cell127,1323–1334(2006). wereselected. 5. Selivanova,G.&Wiman,K.G.Reactivationofmutantp53:molecular mechanismsandtherapeuticpotential.Oncogene26,2243–2254(2007). Cellviabilityassay.Cellswereplacedin96-wellplatesatadensityof10,000cells 6. Sharpless,N.E.&DePinho,R.A.Cancerbiology:gonebutnotforgotten. perwellandincubatedovernight.Thenextday,doxycycline(finalconcentration Nature445,606–607(2007). 1mgml(cid:2)1)wasaddedtoinducetheexpressionofp53for8hbeforePRIMA-1 7. Ventura,A.etal.Restorationofp53functionleadstotumourregression (50mMfinalconcentration)orsolventwasaddedtothecultures.PRIMA-1was invivo.Nature445,661–665(2007). preheatedto1001Cfor10mintopromoteformationofactivedecomposition 8. Wiman,K.G.Restorationofwild-typep53functioninhumantumors: productsandthencooledbeforeitwasusedintheseexperiments26.Cellviability strategiesforefficientcancertherapy.Adv.CancerRes.97,321–338(2007). assayswereperformedusingCellTiter-GloLuminescentCellViabilityAssay 9. Xue,W.etal.Senescenceandtumourclearanceistriggeredbyp53restoration (Promega,Wisconsin,MD)accordingtothemanufacturer’sinstructions.Data inmurinelivercarcinomas.Nature445,656–660(2007). representtheaverageoffourindependentsamples. 10.Baroni,T.E.etal.Aglobalsuppressormotifforp53cancermutants.Proc.Natl Acad.Sci.USA101,4930–4935(2004). 11.Baronio,R.etal.All-codonscanningidentifiesp53cancerrescuemutations. Westernblotanalysis.Approximately500,000cellsweretreatedwithdoxycycline NucleicAcidsRes.38,7079–7088(2010). atafinalconcentrationof1mgml(cid:2)1for8htoinduceexpressionofp53,then 12.Brachmann,R.K.,Yu,K.,Eby,Y.,Pavletich,N.P.&Boeke,J.D.Genetic treatedwithsticticacidorvehicle(dimethylsulphoxide,DMSO)atvariouscon- selectionofintragenicsuppressormutationsthatreversetheeffectofcommon centrationsfor48h.Forwesternblotanalysis,cellswerelysedin8MUreabuffer p53cancermutations.EMBOJ.17,1847–1859(1998). andequalamountsoftotalcelllysateswereresolvedbySDS–PAGE(12.5%gel). 13.Danziger,S.A.etal.Predictingpositivep53cancerrescueregionsusingMost ThenproteinsweretransferredontoImmobilonPVDFmembrane(Millipore)and InformativePositive(MIP)activelearning.PLoSComput.Biol.5,e1000498 probedwithananti-p21antibody(SantaCruzCat#:sc-397).p21expressionwas (2009). quantifiedusingaFujiLAS-4000imagingsystemandanalysedwiththeMulti 14.Danziger,S.A.etal.Functionalcensusofmutationsequencespaces:the Gaugev3software. exampleofp53cancerrescuemutants.IEEEACMTransact.Comput.Biol. Bioinform.IEEEACM3,114–125(2006). PUMAandp21reporterassay.Soas-2-PUMA-luc2orSoas-2-p21-luc2celllines 15.Danziger,S.A.,Zeng,J.,Wang,Y.,Brachmann,R.K.&Lathrop,R.H. weretransfectedwith500ngofcytomegalovirus-renillaplasmidand125ngof Choosingwheretolooknextinamutationsequencespace:activeLearningof plamidcarryingeitheremptyvector,p53wtormutantsR175HandG245S12using informativep53cancerrescuemutants.Bioinformatics23,i104–i114(2007). Lipofectamine2000.Thedifferentcompoundswereadded21haftertransfection. 16.Wieczorek,A.M.,Waterman,J.L.,Waterman,M.J.&Halazonetis,T.D. ActivationofthePUMAandp21reporterswasanalysedbyaluciferaseassay(Dual Structure-basedrescueofcommontumor-derivedp53mutants.Nat.Med.2, luciferaseassaysystem,Promega)8haftertheadditionofcompounds. 1143–1146(1996). 17.Bykov,V.J.,Issaeva,N.,Selivanova,G.&Wiman,K.G.Mutantp53-dependent Purificationofwild-typeandmutantp53coredomains.Thewild-typep53core growthsuppressiondistinguishesPRIMA-1fromknownanticancerdrugs:a statisticalanalysisofinformationintheNationalCancerInstitutedatabase. domain(residues94-312)hadbeenpreviouslyintroducedintothebacterial expressionvectorpSE420.MutantsG245SandR175Hweregeneratedbyusinga Carcinogenesis23,2011–2018(2002). site-directedmutagenesiskitinthissamevector(Invitrogen,GrandIsland,NY). 18.Bykov,V.J.etal.Restorationofthetumorsuppressorfunctiontomutantp53 ThesevectorsweretransformedintoEscherichiacoliRosetta2(DE3)strain,then byalow-molecular-weightcompound.Nat.Med.8,282–288(2002). expressedasdescribed34.Proteinswerepurifiedinaseriesofchromatographic 19.Bykov,V.J.etal.Reactivationofmutantp53andinductionofapoptosisin steps:Q-Sepharoseanionexchangecolumn,SP-Sepharosecationexchange humantumorcellsbymaleimideanalogs.J.Biol.Chem.280,30384–30391 column,affinitychromatographyusingaHiTrapheparinSepharosecolumnand (2005). gelfiltrationonaSuperdex200column(GEHealthcare,Piscataway,NJ),followed 20.North,S.,Pluquet,O.,Maurici,D.,El-Ghissassi,F.&Hainaut,P.Restorationof bydialysisagainst50mMHEPESpH7.5,150mMNaCland0.1mM wild-typeconformationandactivityofatemperature-sensitivemutantofp53 dithiothreitol.PureproteinwasconcentratedbyMacrosepAdvanceCentrifuge (p53(V272M))bythecytoprotectiveaminothiolWR1065intheesophageal Devices(PALL,PortWashington,NY)to0.22mMandstoredat (cid:2)201Cfor cancercelllineTE-1.Mol.Carcinog.33,181–188(2002). furtheruse.ProteinconcentrationwasdeterminedbyaShimadzu(Columbia,MD) 21.Reddy,N.L.,Hill,J.,Ye,L.,Fernandes,P.B.&Stout,D.M.Identificationand ultraviolet–visrecordingspectrophotometerwithanextinctioncoefficientof structure-activityrelationshipstudiesof3-methylene-2-norbornanoneas 8 NATURECOMMUNICATIONS|4:1407|DOI:10.1038/ncomms2361|www.nature.com/naturecommunications &2013MacmillanPublishersLimited.Allrightsreserved. ARTICLE NATURECOMMUNICATIONS|DOI:10.1038/ncomms2361 potentanti-proliferativeagentspresumablyworkingthroughp53mediated 51.Rodriguez,R.,Chinea,G.,Lopez,N.,Pons,T.&Vriend,G.Homology apoptosis.Bioorg.Med.Chem.Lett.14,5645–5649(2004). modeling,modelandsoftwareevaluation:threerelatedresources. 22.Zache,N.etal.Mutantp53targetingbythelowmolecularweightcompound Bioinformatics14,523–528(1998). STIMA-1.Mol.Oncol.2,70–80(2008). 52.Chen,V.B.etal.MolProbity:all-atomstructurevalidationformacromolecular 23.Boeckler,F.M.etal.Targetedrescueofadestabilizedmutantofp53byanin crystallography.Actacrystallographica.Sec.DBiol.Crystallogr.66,12–21(2010). silicoscreeneddrug.Proc.NatlAcad.Sci.USA105,10360–10365(2008). 53.Hornak,V.etal.ComparisonofmultipleAmberforcefieldsanddevelopment 24.Wilcken,R.etal.Halogen-EnrichedFragmentLibrariesasLeadsforDrug ofimprovedproteinbackboneparameters.Proteins65,712–725(2006). RescueofMutantp53.J.Am.Chem.Soc.134,6810–6818(2012). 54.Phillips,J.C.etal.ScalablemoleculardynamicswithNAMD.J.Comput.Chem. 25.Yu,X.,Vazquez,A.,Levine,A.J.&Carpizo,D.R.Allele-Specificp53Mutant 26,1781–1802(2005). Reactivation.CancerCell21,614–625(2012). 55.Wang,J.,Wang,W.,Kollman,P.A.&Case,D.A.Automaticatomtypeand 26.Lambert,J.M.etal.PRIMA-1reactivatesmutantp53bycovalentbindingto bondtypeperceptioninmolecularmechanicalcalculations.J.Mol.Graph. thecoredomain.CancerCell15,376–388(2009). Model25,247–260(2006). 27.Wiman,K.G.Pharmacologicalreactivationofmutantp53:fromprotein 56.Wang,J.,Wolf,R.M.,Caldwell,J.W.,Kollman,P.A.&Case,D.A. structuretothecancerpatient.Oncogene29,4245–4252(2010). Developmentandtestingofageneralamberforcefield.J.Comput.Chem.25, 28.Amaro,R.E.,Baron,R.&McCammon,J.A.Animprovedrelaxedcomplex 1157–1174(2004). schemeforreceptorflexibilityincomputer-aideddrugdesign.J.Comput.Aided 57.Humphrey,W.,Dalke,A.&Schulten,K.VMD:visualmoleculardynamics. Mol.Des.22,693–705(2008). J.Mol.Graph.14,33–3827–38(1996). 29.Cheng,L.S.etal.Ensemble-basedvirtualscreeningrevealspotentialnovel 58.Baron,R.&McCammon,J.A.Dynamics,hydration,andmotionalaveragingof antiviralcompoundsforavianinfluenzaneuraminidase.J.Med.Chem.51, aloop-gatedartificialproteincavity:theW191Gmutantofcytochromec 3878–3894(2008). peroxidaseinwaterasrevealedbymoleculardynamicssimulations. 30.Malecka,K.A.,Ho,W.C.&Marmorstein,R.Crystalstructureofap53core Biochemistry46,10629–10642(2007). tetramerboundtoDNA.Oncogene28,325–333(2009). 59.Hess,B.,Kutzner,C.,Spoel,D.v.d.&Lindahl,E.GROMACS4:algorithmsfor 31.Friedler,A.etal.Apeptidethatbindsandstabilizesp53coredomain: highlyefficient,load-balanced,andscalablemolecularsimulation.J.Chem. chaperonestrategyforrescueofoncogenicmutants.Proc.NatlAcad.Sci.USA TheoryComput.4,435–447(2008). 99,937–942(2002). 60.Trott,O.&Olson,A.J.AutoDockVina:improvingthespeedandaccuracyof 32.Kaar,J.L.etal.Stabilizationofmutantp53viaalkylationofcysteinesand dockingwithanewscoringfunction,efficientoptimization,and effectsonDNAbinding.Prot.Sci.19,2267–2278(2010). multithreading.J.Comput.Chem.31,455–461(2010). 33.Cho,Y.,Gorina,S.,Jeffrey,P.D.&Pavletich,N.P.Crystalstructureofap53 tumorsuppressor-DNAcomplex:understandingtumorigenicmutations. Acknowledgements Science265,346–355(1994). ThisworkwasfundedinpartbytheNationalInstitutesofHealthunderNationalCancer 34.Wang,Y.,Rosengarth,A.&Luecke,H.Structureofthehumanp53core InstitutegrantR01CA112560toR.H.L.andP.K.A.R.C.,R.H.L.andP.K.acknowledge domainintheabsenceofDNA.Actacrystallographica.Sect.DBiolCrystallogr. supportfromtheUCIrvineSchoolofMedicineDean’sTriumvirateaward.R.E.A. 63,276–281(2007). acknowledgessupportfromtheNIHDirector’sNewInnovatorAwardDP2-OD007237, 35.Emamzadah,S.,Tropia,L.&Halazonetis,T.D.Crystalstructureofa theNSFTeraGridSupercomputerresourcesgrantLRACCHE060073NandtheUCI multidomainhumanp53tetramerboundtothenaturalCDKN1A(p21)p53- GreenPlanetclustersupportedbyNSFGrantCHE-0840513.R.H.L.andG.W.H. responseelement.Mol.CancerRes.9,1493–1499(2011). acknowledgesupportfromN.S.F.I.T.R.grantIIS-0326037andNIHSTTRgrant 36.Petty,T.J.etal.Aninducedfitmechanismregulatesp53DNAbindingkinetics R42AI066758.C.K.C.acknowledgessupportfromNIHNCIgrantT32CA009054.H.L. toconfersequencespecificity.EMBOJ.30,2167–2176(2011). acknowledgessupportfromtheUCICenterforBiomembraneSystemsandNIHgrant 37.Canadillas,J.M.etal.Solutionstructureofp53coredomain:structuralbasis R01AI78000.C.D.W.andR.B.acknowledgesupportfromNIHgrantT15LM07443. foritsinstability.Proc.NatlAcad.Sci.USA103,2109–2114(2006). A.R.C.,H.L.,R.H.L.andP.K.acknowledgetheUCIChaoFamilyComprehensiveCancer 38.Velu,C.S.,Niture,S.K.,Doneanu,C.E.,Pattabiraman,N.&Srivenugopal,K. Center.C.D.W.,R.B.,L.V.H.,F.S.,G.W.H.,H.L.,R.H.L.andP.K.acknowledgetheUCI S.Humanp53isinhibitedbyglutathionylationofcysteinespresentinthe InstituteforGenomicsandBioinformatics. proximalDNA-bindingdomainduringoxidativestress.Biochemistry46, 7765–7780(2007). 39.Bullock,A.N.etal.Thermodynamicstabilityofwild-typeandmutantp53core Author contributions domain.Proc.NatlAcad.Sci.USA94,14338–14342(1997). C.D.W.,R.B.andO¨.D.contributedequallytoresearchdesignandexecution.R.H.L.,P.K. 40.Bullock,A.N.,Henckel,J.&Fersht,A.R.Quantitativeanalysisofresidual andR.E.A.contributedequallytoresearchdirection.H.L.designedanddirectedthe foldingandDNAbindinginmutantp53coredomain:definitionofmutant structuralbiologyandbiophysicalstudies.B.D.W.andC.K.C.didtheDSFstudies.R.B., statesforrescueincancertherapy.Oncogene19,1245–1256(2000). L.V.H.,D.-W.L.,B.C.P.,G.W.H.andP.K.didthegeneticandbiochemicalstudies.C.D.W., 41.Natan,E.etal.Interactionofthep53DNA-bindingdomainwithitsn-terminal O¨.D.,F.S.,R.H.L.andR.E.A.didthecomputationalstudies.A.R.C.analysedthebinding extensionmodulatesthestabilityofthep53tetramer.J.Mol.Biol.409,358–368 chemistry.C.D.W.andR.H.L.wrotethepaperwithcontributionsfromR.B.,O¨.D.,B.D.W., (2011). H.L.,P.K.andR.E.A.Allauthorsreviewed,revisedandapprovedthemanuscript. 42.Demir,O¨.etal.Ensemble-basedcomputationalapproachdiscriminates functionalactivityofp53cancerandrescuemutants.PLoSComput.Biol.7, e1002238(2011). Additional information 43.LeGuilloux,V.,Schmidtke,P.&Tuffery,P.Fpocket:anopensourceplatform Accessioncodes:Thecoordinatesofthehumanp53coredomainstructureswiththe forligandpocketdetection.BMCBioinf.10,168(2009). openbindingpocketconformationshavebeendepositedinthePMDBunderaccession 44.Brenke,R.etal.Fragment-basedidentificationofdruggable’hotspots’of codesPM0078199forwtp53,PM0078200forR175H,PM0078201forG245S,and proteinsusingFourierdomaincorrelationtechniques.Bioinformatics25, PM0078202forR273H. 621–627(2009). 45.Goh,A.M.etal.Usingtargetedtransgenicreportermicetostudypromoter- SupplementaryInformationaccompaniesthispaperathttp://www.nature.com/ specificp53transcriptionalactivity.Proc.NatlAcad.Sci.USA109,1685–1690 naturecommunications (2012). Competingfinancialinterests:Theauthorsdeclarenocompetingfinancialinterests. 46.Vedadi,M.etal.Chemicalscreeningmethodstoidentifyligandsthatpromote proteinstability,proteincrystallization,andstructuredetermination.Proc.Natl Reprintsandpermissioninformationisavailableonlineathttp://npg.nature.com/ Acad.Sci.USA103,15835–15840(2006). reprintsandpermissions/ 47.Castrignano,T.,DeMeo,P.D.,Cozzetto,D.,Talamo,I.G.&Tramontano,A. ThePMDBProteinModelDatabase.NucleicAcidsRes.34,D306–D309(2006). Howtocitethisarticle:Wassman,C.D.etal.Computationalidentificationofa 48.Case,D.A.etal.AMBER10(UniversityofCalifornia,2008). transientlyopenL1/S3pocketforreactivationofmutantp53.Nat.Commun.4:1407 49.Jorgensen,W.L.,Chandrasekhar,J.,Madura,J.D.,Impey,R.W.&Klein,M.L. doi:10.1038/ncomms2361(2013). Comparisonofsimplepotentialfunctionsforsimulatingliquidwater.J.Chem. Phys.79,926–935(1983). This work is licensed under a Creative Commons Attribution- 50.Pang,Y.-P.Novelzincproteinmoleculardynamicssimulations:stepstoward NonCommercial-ShareAlike3.0UnportedLicense.Toviewacopyof antiangiogenesisforcancertreatment.J.Mol.Model5,196–202(1999). thislicense,visithttp://creativecommons.org/licenses/by-nc-sa/3.0/ NATURECOMMUNICATIONS|4:1407|DOI:10.1038/ncomms2361|www.nature.com/naturecommunications 9 &2013MacmillanPublishersLimited.Allrightsreserved.