This page intentionally left blank COMPUTATIONAL COMPLEXITY Thisbeginninggraduatetextbookdescribesbothrecentachievementsand classicalresultsofcomputationalcomplexitytheory.Requiringessentially nobackgroundapartfrommathematicalmaturity,thebookcanbeused asareferenceforself-studyforanyoneinterestedincomplexity,including physicists,mathematicians,andotherscientists,aswellasatextbookfor avarietyofcoursesandseminars. Morethan300exercisesareincluded withaselectedhintset. The book starts with a broad introduction to the field and progresses toadvancedresults. ContentsincludedefinitionofTuringmachinesand basic time and space complexity classes, probabilistic algorithms, inter- active proofs, cryptography, quantum computation, lower bounds for concretecomputationalmodels(decisiontrees,communicationcomplex- ity, constantdepth, algebraicandmonotonecircuits, proofcomplexity), average-casecomplexityandhardnessamplification,derandomizationand pseudorandomconstructions,andthePCPTheorem. Sanjeev Arora is a professor in the department of computer science at PrincetonUniversity.Hehasdonefoundationalworkonprobabilistically checkable proofs and approximability of NP-hard problems. He is the foundingdirectoroftheCenterforComputationalIntractability,whichis fundedbytheNationalScienceFoundation. BoazBarakisanassistantprofessorinthedepartmentofcomputerscience atPrincetonUniversity.Hehasdonefoundationalworkincomputational complexity and cryptography, especially in developing “non-blackbox” techniques. COMPUTATIONAL COMPLEXITY A Modern Approach SANJEEV ARORA PrincetonUniversity BOAZ BARAK PrincetonUniversity CAMBRIDGE UNIVERSITY PRESS Cambridge, New York, Melbourne, Madrid, Cape Town, Singapore, São Paulo Cambridge University Press The Edinburgh Building, Cambridge CB2 8RU, UK Published in the United States of America by Cambridge University Press, New York www.cambridge.org Information on this title: www.cambridge.org/9780521424264 © Sanjeev Arora and Boaz Barak 2009 This publication is in copyright. Subject to statutory exception and to the provision of relevant collective licensing agreements, no reproduction of any part may take place without the written permission of Cambridge University Press. First published in print format 2007 ISBN-13 978-0-511-53381-5 eBook (EBL) ISBN-13 978-0-521-42426-4 hardback Cambridge University Press has no responsibility for the persistence or accuracy of urls for external or third-party internet websites referred to in this publication, and does not guarantee that any content on such websites is, or will remain, accurate or appropriate. Toourwives—SilviaandRavit Contents Aboutthisbook pagexiii Acknowledgments xvii Introduction xix 0 Notationalconventions . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 0.1 Representingobjectsasstrings 2 0.2 Decisionproblems/languages 3 0.3 Big-ohnotation 3 exercises 4 PARTONE: BASICCOMPLEXITYCLASSES 7 1 Thecomputationalmodel—andwhyitdoesn’tmatter . . . . . . . . . . 9 1.1 Modelingcomputation:Whatyoureallyneedtoknow 10 1.2 TheTuringmachine 11 1.3 Efficiencyandrunningtime 15 1.4 MachinesasstringsandtheuniversalTuringmachine 19 1.5 Uncomputability:Anintroduction 21 1.6 TheClassP 24 1.7 ProofofTheorem1.9:UniversalsimulationinO(TlogT)-time 29 chapter notes and history 32 exercises 34 2 NPandNPcompleteness . . . . . . . . . . . . . . . . . . . . . . . . . . 38 2.1 The Class NP 39 2.2 ReducibilityandNP-completeness 42 2.3 TheCook-LevinTheorem:Computationislocal 44 2.4 Thewebofreductions 50 2.5 Decisionversussearch 54 2.6 coNP,EXP,andNEXP 55 2.7 More thoughts about P,NP,and all that 57 chapter notes and history 62 exercises 63 vii viii Contents 3 Diagonalization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68 3.1 TimeHierarchyTheorem 69 3.2 NondeterministicTimeHierarchyTheorem 69 3.3 Ladner’s Theorem: Existence of NP-intermediate problems 71 3.4 Oraclemachinesandthelimitsofdiagonalization 72 chapter notes and history 76 exercises 77 4 Spacecomplexity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78 4.1 Definitionofspace-boundedcomputation 78 4.2 PSPACE completeness 83 4.3 NL completeness 87 chapter notes and history 93 exercises 93 5 Thepolynomialhierarchyandalternations . . . . . . . . . . . . . . . . 95 5.1 TheClass(cid:3)p 96 2 5.2 Thepolynomialhierarchy 97 5.3 AlternatingTuringmachines 99 5.4 Time versus alternations: Time-space tradeoffs for SAT 101 5.5 Definingthehierarchyviaoraclemachines 102 chapter notes and history 104 exercises 104 6 Booleancircuits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106 6.1 Boolean circuits and P/poly 107 6.2 Uniformlygeneratedcircuits 111 6.3 Turingmachinesthattakeadvice 112 6.4 P/polyand NP 113 6.5 Circuitlowerbounds 115 6.6 NonuniformHierarchyTheorem 116 6.7 Finergradationsamongcircuitclasses 116 6.8 Circuitsofexponentialsize 119 chapter notes and history 120 exercises 121 7 Randomizedcomputation . . . . . . . . . . . . . . . . . . . . . . . . . 123 7.1 ProbabilisticTuringmachines 124 7.2 SomeexamplesofPTMs 126 7.3 One-sidedand“zero-sided”error: RP,coRP,ZPP 131 7.4 Therobustnessofourdefinitions 132 7.5 Relationship between BPP and other classes 135 7.6 Randomizedreductions 138 7.7 Randomizedspace-boundedcomputation 139 chapter notes and history 140 exercises 141
Description: