ebook img

Computational biophysics of membrane proteins PDF

274 Pages·2016·11.405 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Computational biophysics of membrane proteins

Computational Biophysics of Membrane Proteins 1 0 0 P F 5- 9 6 6 2 6 2 8 7 1 8 7 9 9/ 3 0 1 0. 1 oi: d g | or c. s s.r b u p p:// htt n o 6 1 0 2 er b m e v o N 0 n 3 o d e h s bli u P View Online RSC Theoretical and Computational Chemistry Series Editor-in-Chief: Professor Jonathan Hirst, University of Nottingham, Nottingham, UK 1 0 0 P 5-F Series Advisory Board: 9 6 Professor Joan-Emma Shea, University of California, Santa Barbara, USA 6 2 6 Professor Dongqing Wei, Shanghai Jiao Tong University, China 2 8 7 1 8 7 Titles in the Series: 9 39/ 1: Knowledge-based Expert Systems in Chemistry: Not Counting on 0 0.1 Computers 1 oi: 2: Non-Covalent Interactions: Theory and Experiment d g | 3:Single-IonSolvation:ExperimentalandTheoreticalApproachestoElusive or Thermodynamic Quantities c. s.rs 4: Computational Nanoscience ub 5:ComputationalQuantumChemistry:MolecularStructureandProperties p p:// in Silico htt 6: Reaction Rate Constant Computations: Theories and Applications n 6 o 7: Theory of Molecular Collisions 1 0 8: In Silico Medicinal Chemistry: Computational Methods to Support 2 er Drug Design b m 9: Simulating Enzyme Reactivity: Computational Methods in e v o Enzyme Catalysis N n 30 10: Computational Biophysics of Membrane Proteins o d e h s bli u P How to obtain future titles on publication: Astandingorderplanisavailableforthisseries.Astandingorderwillbring delivery of each new volume immediately on publication. For further information please contact: BookSalesDepartment,RoyalSocietyofChemistry,ThomasGrahamHouse, Science Park, Milton Road, Cambridge, CB4 0WF, UK Telephone: þ44 (0)1223 420066, Fax: þ44 (0)1223 420247, Email: [email protected] Visit our website at www.rsc.org/books View Online Computational Biophysics of Membrane Proteins 1 0 0 P F 5- 9 6 6 2 6 2 Edited by 8 7 1 8 7 9/9 Carmen Domene 3 10 King’s College London, UK 0. 1 Email: [email protected] oi: d g | or c. s s.r b u p p:// htt n o 6 1 0 2 er b m e v o N 0 n 3 o d e h s bli u P View Online 1 0 0 P F 5- 9 6 6 2 6 2 8 7 1 8 7 9 9/ 3 0 1 0. 1 doi: RSCTheoreticalandComputationalChemistrySeriesNo.10 g | or c. PrintISBN:978-1-78262-490-5 s s.r PDFeISBN:978-1-78262-669-5 b u EPUBeISBN:978-1-78262-977-1 p p:// ISSN:2041-3181 htt on AcataloguerecordforthisbookisavailablefromtheBritishLibrary 6 1 0 2 rTheRoyalSocietyofChemistry2017 er b m e Allrightsreserved v o N 0 Apartfromfairdealingforthepurposesofresearchfornon-commercialpurposesorfor n 3 privatestudy,criticismorreview,aspermittedundertheCopyright,DesignsandPatents o d Act1988andtheCopyrightandRelatedRightsRegulations2003,thispublicationmaynot e sh bereproduced,storedortransmitted,inanyformorbyanymeans,withouttheprior bli permissioninwritingofTheRoyalSocietyofChemistryorthecopyrightowner,orinthe u P caseofreproductioninaccordancewiththetermsoflicencesissuedbytheCopyright LicensingAgencyintheUK,orinaccordancewiththetermsofthelicencesissuedby theappropriateReproductionRightsOrganizationoutsidetheUK.Enquiriesconcerning reproductionoutsidethetermsstatedhereshouldbesenttoTheRoyalSocietyof Chemistryattheaddressprintedonthispage. TheRSCisnotresponsibleforindividualopinionsexpressedinthiswork. Theauthorshavesoughttolocateownersofallreproducedmaterialnotintheirown possessionandtrustthatnocopyrightshavebeeninadvertentlyinfringed. PublishedbyTheRoyalSocietyofChemistry, ThomasGrahamHouse,SciencePark,MiltonRoad, CambridgeCB40WF,UK RegisteredCharityNumber207890 Forfurtherinformationseeourwebsiteatwww.rsc.org PrintedintheUnitedKingdombyCPIGroup(UK)Ltd,Croydon,CR04YY,UK 5 0 0 P F 5- 9 6 Contents 6 2 6 2 8 7 1 8 7 9 9/ 3 0 1 Chapter 1 Introduction to the Structural Biology of Membrane 0. 1 oi: Proteins 1 d g | Mary Luckey or c. s.rs 1.1 Introduction 1 b u 1.2 Membrane Features 2 p p:// 1.3 Lipid Polymorphism 5 n htt 1.4 Classes of Membrane Proteins 7 o 6 1.4.1 a-Helical Bundles 7 1 0 2 1.4.2 b-Barrels 8 er mb 1.5 Functions of Membrane Proteins 9 e v 1.5.1 Channels 10 o N 0 1.5.2 Transporters 11 n 3 1.5.3 Enzymes 14 o d e 1.5.4 Receptors 14 h s bli 1.6 Membrane Protein Complexes 15 u P 1.7 Conclusions 17 References 17 Chapter 2 Molecular Dynamics Simulations: Principles and Applications for the Study of Membrane Proteins 19 Victoria Oakes and Carmen Domene 2.1 Introduction 19 2.2 Classical Molecular Dynamics 20 2.2.1 Additive Force Fields 22 2.2.2 Polarisable Force Fields 24 RSCTheoreticalandComputationalChemistrySeriesNo.10 ComputationalBiophysicsofMembraneProteins EditedbyCarmenDomene rTheRoyalSocietyofChemistry2017 PublishedbytheRoyalSocietyofChemistry,www.rsc.org v View Online vi Contents 2.2.3 Practical and Technical Considerations 25 2.2.4 Applications 29 2.3 Coarse-grained Molecular Dynamics Simulations 30 5 0 0 2.4 Ab initio Molecular Dynamics 33 P F 5- 2.5 Enhanced Sampling Techniques and Free Energy 9 66 Methods 34 2 6 2 2.6 Conclusions 40 8 7 1 References 40 8 7 9 9/ 3 0 1 0. Chapter 3 Free Energy Calculations for Understanding Membrane 1 doi: Receptors 59 g | Andrew Pohorille or c. s bs.r 3.1 Introduction 59 u p://p 3.2 The Basics of Free Energy Calculations 60 htt 3.2.1 The Parametric Formulation of Free Energy n o Calculations 60 6 01 3.2.2 Ergodicity, Variance Reduction Strategies, 2 er and the Transition Coordinate 63 b m e 3.3 Free Energy Perturbation Methods 65 v No 3.3.1 Theoretical Background 65 0 n 3 3.3.2 Alchemical Transformations 70 o d 3.4 Probability Distribution Methods 73 e sh 3.5 Thermodynamic Integration 75 bli u 3.5.1 Theoretical Background 75 P 3.5.2 Adaptive Biasing Force Method 78 3.6 Replica Exchange for Enhanced Sampling in Configurational Space 80 3.7 Applications of Free Energy Calculations: Case Studies 81 3.7.1 Binding of Anesthetic Ligands to Receptors 82 3.7.2 Free Energies of Ions across Channels 84 3.7.3 Conformational Transitions in Receptors 86 3.8 Non-equilibrium Properties from Free Energy Calculations 88 3.8.1 Theoretical Background 90 3.8.2 Example – the Leucine–Serine Channel 93 3.9 Summary and Conclusions 96 References 98 View Online Contents vii Chapter 4 Non-atomistic Simulations of Ion Channels 107 Claudio Berti and Simone Furini 4.1 Introduction 107 5 00 4.2 Methods Based on Continuum Distributions P 5-F of Ions 111 9 6 4.2.1 Poisson–Boltzmann 112 6 2 26 4.2.2 Poisson–Nernst–Planck 117 8 17 4.2.3 Improvements of Classical Continuum 8 7 9 Theories of Electrolytes 119 9/ 03 4.3 Particle-based Methods 122 1 0. 4.3.1 Brownian Dynamics 124 1 doi: 4.3.2 Monte Carlo 127 g | 4.4 Methods to Include Atomic Detail in or sc. Non-atomistic Models 128 bs.r 4.4.1 Atomic Detail in Brownian Dynamics 129 u p p:// 4.4.2 Atomic Detail in Continuum Models 132 htt 4.5 Concluding Remarks 133 n 6 o References 133 1 0 2 er b m e Chapter 5 Experimental and Computational Approaches to Study v o N Membranes and Lipid–Protein Interactions 137 0 n 3 Durba Sengupta, G. Aditya Kumar, Xavier Prasanna and o d Amitabha Chattopadhyay e h s ubli 5.1 Introduction 137 P 5.1.1 Membrane Components 138 5.2 Role of Membrane Lipids in Membrane Protein Organization and Function 139 5.3 Mechanisms for Lipid Regulation of Membrane Proteins 140 5.3.1 Specific Membrane Effects 140 5.3.2 Non-specific Membrane Effects 142 5.4 Range of Time Scales Exhibited by Membranes 142 5.5 Lipid–Protein Interactions: Insights from Experimental Approaches 144 5.5.1 DeterminingNear-neighborRelationshipsin Membranes: Interaction of Melittin with Membrane Cholesterol utilizing FRET 144 5.5.2 Interaction of the Actin Cytoskeleton with GPCRs: Application of FRAP 147 View Online viii Contents 5.6 Computational Approaches to Study Membrane Organization and Lipid–Protein Interactions 149 5.6.1 Simulating Single Component and Multi-component Bilayers 151 5 0 0 5.6.2 Atomistic Simulations Elucidating P F 5- Lipid–Protein Interactions 151 9 66 5.6.3 Coarse-grain Methods to Analyze Membrane 2 6 2 Protein Interactions 153 8 7 1 5.6.4 Enhanced Sampling Methods 154 8 7 9/9 5.7 Future Perspectives: The Road Ahead 155 3 0 Acknowledgements 155 1 10. References 155 oi: d g | c.or Chapter 6 Computer Simulation of Ion Channels 161 s s.r Ben Corry b u p p:// 6.1 Introduction to Ion Channels 161 htt n 6.2 Questions that can be Addressed and Associated o 16 Timescales 165 0 er 2 6.3 Ion Permeation 169 mb 6.4 Ion Selectivity 174 e ov 6.4.1 Na1/Ca21 Selection 174 N 0 6.4.2 Na1/K1 Selection 177 on 3 6.5 Channel Gating 181 d he 6.6 Interactions of Channels with Drugs s bli and Toxins 184 u P 6.6.1 Toxin–Channel Interactions 184 6.6.2 Channel Blockage by Small Molecules 187 6.7 Conclusions 189 Acknowledgements 190 References 190 Chapter 7 Computational Characterization of Molecular Mechanisms of Membrane Transporter Function 197 Noah Trebesch, Josh V. Vermaas and Emad Tajkhorshid 7.1 Membrane Transport – A Fundamental Biological Process 197 7.2 Substrate Binding and Unbinding 200 7.2.1 Spontaneous Binding Simulations Revealing a Binding Mechanism and Site 201 View Online Contents ix 7.2.2 Proposing Substrate Binding Sites through Molecular Docking 202 7.2.3 Unraveling Substrate Release Pathways 204 7.3 Capturing Localized Transporter Motions with 5 0 0 Equilibrium Molecular Dynamics 205 P F 5- 7.3.1 Substrate-induced Structural Changes of an 9 66 Antiporter 206 2 6 2 7.3.2 Gating Elements in a Neurotransmitter 8 7 1 Transporter 206 8 7 9/9 7.4 Computational Description of Global Structural 3 0 Transitions in Membrane Transporters 209 1 10. 7.4.1 Nonequilibrium Simulation of Structural oi: d Changes 210 org | 7.4.2 Application to an ABC Transporter 212 sc. 7.5 Water within Transporters 215 s.r ub 7.5.1 Water Leaks in Transporters 216 p p:// 7.5.2 Water in Proton Pathways 216 htt 7.6 The Lipid Frontier 219 n o 6 7.6.1 Why Now? Initial Barriers to Simulating 1 20 Lipid–Protein Interactions 219 ber 7.6.2 Computational Probes of Lipid–Protein m ve Interactions 220 o 0 N 7.7 Concluding Remarks 221 n 3 Acknowledgements 222 o ed References 223 h s bli u P Chapter 8 Computational Studies of Receptors 237 Maria Musgaard and Philip C. Biggin 8.1 Introduction 237 8.2 Network Models Can Provide Insight into Large-scale Conformational Changes 239 8.3 Network Models to Examine Gating 241 8.4 Network Models to Compare Dynamics 242 8.5 Network Models to Suggest Novel Mechanisms for Modulation 244 8.6 Molecular Dynamics to Aid Crystallographic Interpretation 245 8.7 Molecular Dynamics to Move between States 247 8.8 Molecular Dynamics to Refine Working Models 249 View Online x Contents 8.9 Molecular Dynamics to Explain the Effects of Ions and Water 251 8.10 Molecular Dynamics to Quantify Free Energy Requirements 253 5 0 0 8.11 Conclusions 255 P F 5- References 255 9 6 6 2 26 Subject Index 259 8 7 1 8 7 9 9/ 3 0 1 0. 1 oi: d g | or c. s s.r b u p p:// htt n o 6 1 0 2 er b m e v o N 0 n 3 o d e h s bli u P

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.