ebook img

Computational and Statistical Methods for Protein Quantification by Mass Spectrometry PDF

352 Pages·2013·3.434 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Computational and Statistical Methods for Protein Quantification by Mass Spectrometry

JWST252-fm JWST252-Eidhammer Printer:YettoCome October31,2012 10:44 Trim:229mm×152mm Computational and Statistical Methods for Protein Quantification by Mass Spectrometry i JWST252-fm JWST252-Eidhammer Printer:YettoCome October31,2012 10:44 Trim:229mm×152mm Computational and Statistical Methods for Protein Quantification by Mass Spectrometry Ingvar Eidhammer DepartmentofInformatics, UniversityofBergen,Norway Harald Barsnes DepartmentofBiomedicine,UniversityofBergen,Norway Geir Egil Eide CentreforClinical Research,HaukelandUniversity HospitalandDepartmentofPublicHealthandPrimaryHealthCare, UniversityofBergen,Norway Lennart Martens DepartmentofBiochemistry,Faculty ofMedicineand HealthSciences,GhentUniversity,Belgium A John Wiley & Sons, Ltd., Publication iii JWST252-fm JWST252-Eidhammer Printer:YettoCome October31,2012 10:44 Trim:229mm×152mm Thiseditionfirstpublished2013 (cid:2)C 2013JohnWiley&Sons,Ltd Registeredoffice JohnWiley&SonsLtd,TheAtrium,SouthernGate,Chichester,WestSussex,PO198SQ,United Kingdom Fordetailsofourglobaleditorialoffices,forcustomerservicesandforinformationabouthowtoapply forpermissiontoreusethecopyrightmaterialinthisbookpleaseseeourwebsiteatwww.wiley.com. Therightoftheauthortobeidentifiedastheauthorofthisworkhasbeenassertedinaccordancewiththe Copyright,DesignsandPatentsAct1988. Allrightsreserved.Nopartofthispublicationmaybereproduced,storedinaretrievalsystem,or transmitted,inanyformorbyanymeans,electronic,mechanical,photocopying,recordingorotherwise, exceptaspermittedbytheUKCopyright,DesignsandPatentsAct1988,withoutthepriorpermissionof thepublisher. Wileyalsopublishesitsbooksinavarietyofelectronicformats.Somecontentthatappearsinprintmay notbeavailableinelectronicbooks. Designationsusedbycompaniestodistinguishtheirproductsareoftenclaimedastrademarks.Allbrand namesandproductnamesusedinthisbookaretradenames,servicemarks,trademarksorregistered trademarksoftheirrespectiveowners.Thepublisherisnotassociatedwithanyproductorvendor mentionedinthisbook.Thispublicationisdesignedtoprovideaccurateandauthoritativeinformationin regardtothesubjectmattercovered.Itissoldontheunderstandingthatthepublisherisnotengagedin renderingprofessionalservices.Ifprofessionaladviceorotherexpertassistanceisrequired,theservices ofacompetentprofessionalshouldbesought. LibraryofCongressCataloging-in-PublicationDataappliedfor. AcataloguerecordforthisbookisavailablefromtheBritishLibrary. ISBN:978-1-119-96400-1 Typesetin10/12ptTimesbyAptaraInc.,NewDelhi,India iv JWST252-fm JWST252-Eidhammer Printer:YettoCome October31,2012 10:44 Trim:229mm×152mm Contents Preface xv Terminology xvii Acknowledgements xix 1 Introduction 1 1.1 Thecompositionofanorganism 1 1.1.1 Asimplemodelofanorganism 1 1.1.2 Compositionofcells 3 1.2 Homeostasis,physiology,andpathology 4 1.3 Proteinsynthesis 4 1.4 Site,sample,state,andenvironment 4 1.5 Abundanceandexpression–proteinandproteomeprofiles 5 1.5.1 Theproteindynamicrange 6 1.6 Theimportanceofexactspecificationofsitesandstates 6 1.6.1 Biologicalfeatures 7 1.6.2 Physiologicalandpathologicalfeatures 7 1.6.3 Inputfeatures 7 1.6.4 Externalfeatures 7 1.6.5 Activityfeatures 7 1.6.6 Thecellcycle 8 1.7 Relativeandabsolutequantification 8 1.7.1 Relativequantification 8 1.7.2 Absolutequantification 9 1.8 Invivoandinvitroexperiments 9 1.9 Goalsforquantitativeproteinexperiments 10 1.10 Exercises 10 2 CorrelationsofmRNAandproteinabundances 12 2.1 Investigatingthecorrelation 12 2.2 Codonbias 14 2.3 Mainresultsfromexperiments 15 2.4 TheidealcaseformRNA-proteincomparison 16 v JWST252-fm JWST252-Eidhammer Printer:YettoCome October31,2012 10:44 Trim:229mm×152mm vi CONTENTS 2.5 Exploringcorrelationacrossgenes 17 2.6 Exploringcorrelationwithinonegene 18 2.7 Correlationacrosssubsets 18 2.8 ComparingmRNAandproteinabundancesacrossgenesfrom twosituations 19 2.9 Exercises 20 2.10 Bibliographicnotes 21 3 Proteinlevelquantification 22 3.1 Two-dimensionalgels 22 3.1.1 Comparingresultsfromdifferentexperiments–DIGE 23 3.2 Proteinarrays 23 3.2.1 Forwardarrays 24 3.2.2 Reversearrays 25 3.2.3 Detectionofbindingmolecules 25 3.2.4 Analysisofproteinarrayreadouts 25 3.3 Westernblotting 25 3.4 ELISA–Enzyme-LinkedImmunosorbentAssay 26 3.5 Bibliographicnotes 26 4 Massspectrometryandproteinidentification 27 4.1 Massspectrometry 27 4.1.1 Peptidemassfingerprinting(PMF) 28 4.1.2 MS/MS–tandemMS 29 4.1.3 Massspectrometers 29 4.2 Isotopecompositionofpeptides 32 4.2.1 Predictingtheisotopeintensitydistribution 34 4.2.2 Estimatingthecharge 34 4.2.3 Revealingisotopepatterns 34 4.3 Presentingtheintensities–thespectra 36 4.4 Peakintensitycalculation 38 4.5 PeptideidentificationbyMS/MSspectra 38 4.5.1 Spectralcomparison 41 4.5.2 Sequentialcomparison 41 4.5.3 Scoring 42 4.5.4 Statisticalsignificance 42 4.6 Theproteininferenceproblem 42 4.6.1 Determiningmaximalexplanatorysets 44 4.6.2 Determiningminimalexplanatorysets 44 4.7 Falsediscoveryratefortheidentifications 44 4.7.1 Constructingthedecoydatabase 45 4.7.2 Separateorcompositesearch 46 4.8 Exercises 46 4.9 Bibliographicnotes 47 JWST252-fm JWST252-Eidhammer Printer:YettoCome October31,2012 10:44 Trim:229mm×152mm CONTENTS vii 5 Proteinquantificationbymassspectrometry 48 5.1 Situations,protein,andpeptidevariants 48 5.1.1 Situation 48 5.1.2 Proteinvariants–peptidevariants 48 5.2 Replicates 49 5.3 Run–experiment–project 50 5.3.1 LC-MS/MSrun 50 5.3.2 Quantificationrun 51 5.3.3 Quantificationexperiment 52 5.3.4 Quantificationproject 52 5.3.5 Planningquantificationexperiments 52 5.4 Comparingquantificationapproaches/methods 54 5.4.1 Accuracy 54 5.4.2 Precision 55 5.4.3 Repeatabilityandreproducibility 56 5.4.4 Dynamicrangeandlineardynamicrange 56 5.4.5 Limitofblank–LOB 56 5.4.6 Limitofdetection–LOD 57 5.4.7 Limitofquantification–LOQ 57 5.4.8 Sensitivity 57 5.4.9 Selectivity 57 5.5 ClassificationofapproachesforquantificationusingLC-MS/MS 57 5.5.1 Discoveryortargetedproteinquantification 58 5.5.2 Labelbasedvs.labelfreequantification 59 5.5.3 Abundancedetermination–ioncurrentvs.peptide identification 60 5.5.4 Classification 60 5.6 Thepeptide(occurrence)space 60 5.7 Ionchromatograms 62 5.8 Frompeptidestoproteinabundances 62 5.8.1 Combinedsingleabundancefromsingleabundances 64 5.8.2 Relativeabundancefromsingleabundances 65 5.8.3 Combinedrelativeabundancefromrelativeabundances 66 5.9 Proteininferenceandproteinabundancecalculation 67 5.9.1 Useofthepeptidesinproteinabundancecalculation 67 5.9.2 Classifyingtheproteins 68 5.9.3 Cansharedpeptidesbeusedforquantification? 68 5.10 Peptidetables 70 5.11 Assumptionsforrelativequantification 70 5.12 Analysisfordifferentiallyabundantproteins 71 5.13 Normalizationofdata 71 5.14 Exercises 72 5.15 Bibliographicnotes 74 JWST252-fm JWST252-Eidhammer Printer:YettoCome October31,2012 10:44 Trim:229mm×152mm viii CONTENTS 6 Statisticalnormalization 75 6.1 Someillustrativeexamples 75 6.2 Non-normallydistributedpopulations 76 6.2.1 Skeweddistributions 76 6.2.2 Measuresofskewness 76 6.2.3 Steepnessofthepeak–kurtosis 77 6.3 Testingfornormality 78 6.3.1 Normalprobabilityplot 79 6.3.2 Someteststatisticsfornormalitytesting 81 6.4 Outliers 82 6.4.1 Teststatisticsfortheidentificationofasingleoutlier 83 6.4.2 Testingformorethanoneoutlier 86 6.4.3 Robuststatisticsformeanandstandarddeviation 88 6.4.4 Outliersinregression 89 6.5 Varianceinequality 90 6.6 Normalizationandlogarithmictransformation 90 6.6.1 Thelogarithmicfunction 90 6.6.2 Choosingthebase 91 6.6.3 Logarithmicnormalizationofpeptide/proteinratios 91 6.6.4 Pitfallsoflogarithmictransformations 92 6.6.5 Variancestabilizationbylogarithmictransformation 92 6.6.6 Logarithmicscaleforpresentation 93 6.7 Exercises 94 6.8 Bibliographicnotes 95 7 Experimentalnormalization 96 7.1 Sourcesofvariationandlevelofnormalization 96 7.2 Spectralnormalization 98 7.2.1 Scalebasednormalization 99 7.2.2 Rankbasednormalization 101 7.2.3 Combiningscalebasedandrankbasednormalization 101 7.2.4 Reproducibilityofthenormalizationmethods 102 7.3 Normalizationatthepeptideandproteinlevel 103 7.4 Normalizingusingsum,mean,andmedian 104 7.5 MA-plotfornormalization 104 7.5.1 Globalintensitynormalization 105 7.5.2 Linearregressionnormalization 106 7.6 Localregressionnormalization–LOWESS 106 7.7 Quantilenormalization 107 7.8 Overfitting 108 7.9 Exercises 109 7.10 Bibliographicnotes 109 JWST252-fm JWST252-Eidhammer Printer:YettoCome October31,2012 10:44 Trim:229mm×152mm CONTENTS ix 8 Statisticalanalysis 110 8.1 Useofreplicatesforstatisticalanalysis 110 8.2 Usingasetofproteinsforstatisticalanalysis 111 8.2.1 Z-variable 111 8.2.2 G-statistic 112 8.2.3 Fisher–Irwinexacttest 115 8.3 Missingvalues 116 8.3.1 Reasonsformissingvalues 116 8.3.2 Handlingmissingvalues 118 8.4 Predictionandhypothesistesting 118 8.4.1 Predictionerrors 119 8.4.2 Hypothesistesting 120 8.5 Statisticalsignificanceformultipletesting 121 8.5.1 Falsepositiveratecontrol 122 8.5.2 Falsediscoveryratecontrol 123 8.6 Exercises 127 8.7 Bibliographicnotes 128 9 Labelbasedquantification 129 9.1 Labelingtechniquesforlabelbasedquantification 129 9.2 Labelrequirements 130 9.3 Labelsandlabelingproperties 130 9.3.1 Quantificationlevel 130 9.3.2 Labelincorporation 131 9.3.3 Incorporationlevel 131 9.3.4 Numberofcomparedsamples 132 9.3.5 Commonlabels 132 9.4 Experimentalrequirements 132 9.5 Recognizingcorrespondingpeptidevariants 133 9.5.1 RecognizingpeptidevariantsinMSspectra 133 9.5.2 RecognizingpeptidevariantsinMS/MSspectra 134 9.6 Referencefreevs.referencebased 135 9.6.1 Referencefreequantification 135 9.6.2 Referencebasedquantification 135 9.7 Labelingconsiderations 136 9.8 Exercises 136 9.9 Bibliographicnotes 137 10 ReporterbasedMS/MSquantification 138 10.1 Isobariclabels 138 10.2 iTRAQ 140 10.2.1 Fragmentation 141 10.2.2 Reporterionintensities 143 10.2.3 iTRAQ8-plex 144 JWST252-fm JWST252-Eidhammer Printer:YettoCome October31,2012 10:44 Trim:229mm×152mm x CONTENTS 10.3 TMT–TandemMassTag 145 10.4 Reporterbasedquantificationruns 145 10.5 Identificationandquantification 145 10.6 Peptidetable 147 10.7 Reporterbasedquantificationexperiments 147 10.7.1 NormalizationacrossLC-MS/MSruns–useofa referencesample 147 10.7.2 NormalizingwithinanLC-MS/MSrun 149 10.7.3 Fromreporterintensitiestoproteinabundances 149 10.7.4 Findingdifferentiallyabundantproteins 150 10.7.5 Distributingthereplicatesonthequantificationruns 151 10.7.6 Protocols 152 10.8 Exercises 152 10.9 Bibliographicnotes 153 11 FragmentbasedMS/MSquantification 155 11.1 Thelabelmasses 155 11.2 Identification 157 11.3 Peptideandproteinquantification 158 11.4 Exercises 158 11.5 Bibliographicnotes 159 12 LabelbasedquantificationbyMSspectra 160 12.1 Differentlabelingtechniques 160 12.1.1 Metaboliclabeling–SILAC 160 12.1.2 Chemicallabeling 162 12.1.3 Enzymaticlabeling–18O 165 12.2 Experimentalsetup 166 12.3 MaxQuantasamodel 167 12.3.1 HL-pairs 167 12.3.2 ReliabilityofHL-pairs 169 12.3.3 Reliableproteinresults 169 12.4 TheMaxQuantprocedure 169 12.4.1 RecognizeHL-pairs 169 12.4.2 EstimateHL-ratios 176 12.4.3 IdentifyHL-pairsbydatabasesearch 177 12.4.4 Inferproteindata 181 12.5 Exercises 183 12.6 Bibliographicnotes 184 13 LabelfreequantificationbyMSspectra 185 13.1 Anidealcase–twoproteinsamples 185 13.2 Therealworld 186 13.2.1 Multiplesamples 187 JWST252-fm JWST252-Eidhammer Printer:YettoCome October31,2012 10:44 Trim:229mm×152mm CONTENTS xi 13.3 Experimentalsetup 187 13.4 Forms 187 13.5 Thequantificationprocess 188 13.6 Formdetection 189 13.7 Pair-wiseretentiontimecorrection 191 13.7.1 Determiningpotentiallycorrespondingforms 191 13.7.2 Linearcorrections 192 13.7.3 Nonlinearcorrections 192 13.8 Approachesforformtupledetection 193 13.9 Pair-wisealignment 193 13.9.1 Distancebetweenforms 194 13.9.2 Findinganoptimalalignment 195 13.10 Usingareferencerunforalignment 196 13.11 Completepair-wisealignment 197 13.12 Hierarchicalprogressivealignment 197 13.12.1 Measuringthesimilarityorthedistanceoftworuns 198 13.12.2 Constructingstaticguidetrees 198 13.12.3 Constructingdynamicguidetrees 199 13.12.4 Aligningsubalignments 199 13.12.5 SuperHirn 199 13.13 Simultaneousiterativealignment 200 13.13.1 ConstructingtheinitialalignmentinXCMS 200 13.13.2 Changingtheinitialalignment 201 13.14 Theendresultandfurtheranalysis 202 13.15 Exercises 202 13.16 Bibliographicnotes 204 14 LabelfreequantificationbyMS/MSspectra 205 14.1 Abundancemeasurements 205 14.2 Normalization 207 14.3 Proposedmethods 207 14.4 Methodsforsingleabundancecalculation 207 14.4.1 emPAI 208 14.4.2 PMSS 208 14.4.3 NSAF 209 14.4.4 SI 209 14.5 Methodsforrelativeabundancecalculation 210 14.5.1 PASC 210 14.5.2 RIBAR 210 14.5.3 xRIBAR 211 14.6 Comparingmethods 212 14.6.1 AnanalysisbyGriffin 212 14.6.2 AnanalysisbyColaert 213 14.7 Improvingthereliabilityofspectralcountquantification 213

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.