ebook img

Compressed Sensing in Radar Signal Processing PDF

396 Pages·2019·15.738 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Compressed Sensing in Radar Signal Processing

CompressedSensinginRadarSignalProcessing Learnaboutthemostrecenttheoreticalandpracticaladvancesinradarsignalprocessing using tools and techniques from compressive sensing. Providing a broad perspective that fully demonstrates the impact of these tools, the accessible and tutorial-like chapterscovertopicssuchasclutterrejection,CFARdetection,adaptivebeamforming, randomarraysforradar,space–timeadaptiveprocessing,andMIMOradar.Eachchapter includescoverageoftheoreticalprinciples,adetailedreviewofcurrentknowledge,and discussion of key applications, and also highlights the potential benefits of using compressed sensing algorithms. A unified notation and numerous cross-references between chapters make it easy to explore different topics side by side. Written by leading experts from both academia and industry, this is the ideal text for researchers, graduatestudents,andindustryprofessionalsworkinginsignalprocessingandradar. Antonio De Maio is a professor in the Department of Electrical Engineering and Information Technology at the University of Naples Federico II, and a Fellow of theIEEE. Yonina C.Eldar is a professor at the Weizmann Institute of Science. She has authored and edited several books, including Sampling Theory: Beyond Bandlimited Systems andCompressedSensing:TheoryandApplications(CambridgeUniversityPress,2015; 2012).SheisaFellowoftheIEEEandEURASIP,andamemberoftheIsraelNational AcademyofScienceandHumanities. Alexander M. Haimovich is a distinguished professor in the Department of Electrical andComputerEngineeringattheNewJerseyInstituteofTechnology,andaFellowof theIEEE. Compressed Sensing in Radar Signal Processing Editedby ANTONIO DE MAIO UniversityofNaplesFedericoII YONINA C. ELDAR WeizmannInstituteofScience ALEXANDER M. HAIMOVICH NewJerseyInstituteofTechnology UniversityPrintingHouse,CambridgeCB28BS,UnitedKingdom OneLibertyPlaza,20thFloor,NewYork,NY10006,USA 477WilliamstownRoad,PortMelbourne,VIC3207,Australia 314–321,3rdFloor,Plot3,SplendorForum,JasolaDistrictCentre,NewDelhi–110025,India 79AnsonRoad,#06–04/06,Singapore079906 CambridgeUniversityPressispartoftheUniversityofCambridge. ItfurtherstheUniversity’smissionbydisseminatingknowledgeinthepursuitof education,learning,andresearchatthehighestinternationallevelsofexcellence. www.cambridge.org Informationonthistitle:www.cambridge.org/9781108428293 DOI:10.1017/9781108552653 ©CambridgeUniversityPress2020 Thispublicationisincopyright.Subjecttostatutoryexception andtotheprovisionsofrelevantcollectivelicensingagreements, noreproductionofanypartmaytakeplacewithoutthewritten permissionofCambridgeUniversityPress. Firstpublished2020 PrintedintheUnitedKingdombyTJInternationalLtd,PadstowCornwall AcataloguerecordforthispublicationisavailablefromtheBritishLibrary. LibraryofCongressCataloging-in-PublicationData Names:DeMaio,Antonio,1974–editor.|Eldar,YoninaC.,editor.| Haimovich,AlexanderM.,1954–editor. Title:Compressedsensinginradarsignalprocessing/editedbyAntonioDeMaio, UniversityofNaplesFedericoII,YoninaC.Eldar,WeizmannInstituteofScience, AlexanderM.Haimovich,NewJerseyInstituteofTechnology. Description:Firstedition.|Cambridge,UnitedKingdom;NewYork,NY: CambridgeUniversityPress,[2020]|Includesbibliographicalreferencesandindex. Identifiers:LCCN2019014859|ISBN9781108428293(hardback) Subjects:LCSH:Radar.|Compressedsensing(Telecommunication) Classification:LCCTK6580.C662020|DDC621.3848/3–dc23 LCrecordavailableathttps://lccn.loc.gov/2019014859 ISBN978-1-108-42829-3Hardback CambridgeUniversityPresshasnoresponsibilityforthepersistenceoraccuracy ofURLsforexternalorthird-partyinternetwebsitesreferredtointhispublication anddoesnotguaranteethatanycontentonsuchwebsitesis,orwillremain, accurateorappropriate. TomydaughterClaudia:mylight,myhope,mylove–ADM TomyhusbandShalomiandchildrenYonatan,Moriah,Tal,Noa,andRoei fortheirboundlessloveandforfillingmylifewithendlesshappiness–YE Tomystudentsandcollaboratorsfortheircontributionstomywork onradar–AH Contents ListofContributors pagexi Introduction xiv ListofSymbols xx 1 Sub-NyquistRadar:PrinciplesandPrototypes 1 KumarVijayMishraandYoninaC.Eldar 1.1 Introduction 1 1.2 PriorArtandHistoricalNotes 3 1.3 TemporalSub-NyquistRadar 5 1.4 DopplerSub-NyquistRadar 15 1.5 CognitiveSub-NyquistRadarandSpectralCoexistence 18 1.6 SpatialSub-Nyquist:ApplicationtoMIMORadar 29 1.7 Sub-NyquistSAR 39 1.8 Summary 43 References 44 2 ClutterRejectionandAdaptiveFilteringinCompressedSensingRadar 49 PeterB.Tuuk 2.1 Introduction 49 2.2 ProblemFormulation 50 2.3 InterferenceSources 53 2.4 SignalProcessingTreatmentofClutter 55 2.5 MeasurementCompression 58 2.6 EstimatingInterferenceStatisticsfromCompressedMeasurements 59 2.7 MitigatingClutterinCompressedSensingEstimation 66 2.8 Summary 68 References 69 3 RFIMitigationBasedonCompressiveSensingMethodsforUWBRadarImaging 72 TianyiZhang,JiayingRen,JianLi,DavidJ.Greene,JeremyA.Johnston,andLamH.Nguyen 3.1 Introduction 72 3.2 RPCAforRFIMitigation 75 3.3 CLEAN-BICforRFIMitigation 82 vii viii Contents 3.4 EnhancedAlgorithmsforRFIMitigation 91 3.5 PerformanceEvaluations 92 3.6 Conclusions 101 3.7 Acknowledgment 102 References 102 4 CompressedCFARTechniques 105 LauraAnitoriandArianMaleki 4.1 Introduction 105 4.2 RadarSignalModel 105 4.3 ClassicalRadarDetection 106 4.4 CSRadarDetection 110 4.5 ComplexApproximateMessagePassing(CAMP)Algorithm 112 4.6 TargetDetectionUsingCAMP 115 4.7 AdaptiveCAMPAlgorithm 118 4.8 SimulationResults 120 4.9 ExperimentalResults 127 4.10 Conclusions 131 References 132 5 Sparsity-BasedMethodsforCFARTargetDetectioninSTAPRandomArrays 135 HaleyH.KimandAlexanderM.Haimovich 5.1 Introduction 135 5.2 STAPRadarConcepts 137 5.3 STAPDetectionProblem 145 5.4 CompressiveSensingCFARDetection 148 5.5 NumericalResults 157 5.6 Summary 161 References 162 6 FastandRobustSparsity-BasedSTAPMethodsforNonhomogeneousClutter 165 XiaopengYang,YuzeSun,XuchenWu,TengLong,andTanpanK.Sarkar 6.1 Introduction 165 6.2 SignalModels 166 6.3 SparsityPrincipleAnalysisofSTAP 168 6.4 FastandRobustSparsity-BasedSTAPMethods 172 6.5 Conclusions 190 References 190 7 Super-ResolutionRadarImagingviaConvexOptimization 193 ReinhardHeckel 7.1 Introduction 193

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.