ebook img

Comprehensive chirality : Online PDF

5215 Pages·2012·201.851 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Comprehensive chirality : Online

1.1 Introduction: The Importance of Chirality in Drugs and Agrochemicals JR Cossy,ESPCI, ParisTech, Paris, France r2012ElsevierLtd.Allrightsreserved. 1.1.1 Drugs 1 1.1.1.1 The EnantiomersHave theSameBiological Activity (Type1) 2 1.1.1.2 The EnantiomersHave Qualitatively EqualBiological Effectsbut Their Intensitiescan beDifferent (Type2) 2 1.1.1.3 OnlyOne Enantiomer Possesses thePharmacological Activity (Type3) 3 1.1.1.4 The TwoEnantiomers HaveDifferent Biological Properties (Type4) 3 1.1.2 Agrochemicals 5 References 6 Glossary Enantiomericallyenrichedcompounds Mixture Achiral Notchiral. ofenantiomersinaratiodifferenttoone-to-one Chiral Thistermisusedtodescribeamoleculethatis (1:1). non-superimposableonitsmirrorimage. Racemic Mixtureoftwoenantiomersinaratioone-to-one Enantiomer Acompoundwhichcorrespondstooneof (1:1). twostereoisomersthataremirrorimagesofeachotherand thatarenon-superimposable. 1.1.1 Drugs Whatisachiralmolecule?Whyischiralityimportantfordrugsandagrochemicals? AccordingtoMislow,achiralmoleculeisanobjectif,andonlyif,itisnotsuperposableonitsmirrorimage;otherwiseitis achiral.1Thisdefinitionreferstothespatialarrangementofmoleculesbutdoesnotrefertothestereochemicalcomposition,for exampleofadrug.Whenonesays‘chiraldrugs,’wedonotknowwhetherthisdrugisracemic,whetheritisanenantiomer,or whetheritisamixtureofstereoisomers.Whenadrugisconstitutedbyoneenantiomeritiscalledan‘enantiomer,’byamixtureof enantiomersitiscalled‘enantiomericallyenriched,’andbyaone-to-onemixtureoftwoenantiomersitiscalledaracemate,which canbechiral. Biologicalsystemslikehumanbeings,plants,insects,etc.havebeenknowntoexhibitchiralityandthecriticalmoleculesoflife arealmostentirelyconstitutedbyoneenantiomer.Thenumberofnaturallyoccurringmoleculesisverylargeandthestructural diversityisvast.Theycanbesmallmoleculesormacromoleculesincludingnaturalaminoacids,whicharebuildingblocksfor peptidesandproteins.Sugars,whicharebuildingblocksofpolysaccharides;theycanbesteroidsandmanyothercompoundsthat areconstitutedbyoneenantiomer.Itisworthnotingthatinnature,forthesameclassofcompounds,thesamesenseofchiralityis present in the latter, for example, the same configuration. For example, with rare exceptions, alpha-amino acids have the L-configuration and carbohydrateshave the D-configuration. Due to the chiral nature of the amino acids, drug-binding sites of proteinsareasymmetric.Forexample,theL-andD-configurationsofaminoacidsareimportantinthesynthesisofpeptidesasthe replacement of an amino acid of the L-configuration by an amino acid of the D-configuration can have an impact on the conformationofthepeptidesandthusonitsbiologicalactivity(seeChapter1.5). One of the first observations of biological enantioselectivity was made by Pasteur in 1858. Pasteur observed that when asolutionofracemictartratewasaddedtoasourceofmicroorganism,(þ)-tartaricacidwasconsumedfasterthan((cid:2))-tartaricacid as the latter was not transformed or was metabolized more slowly than (þ)-tartrate.2 Later, Pasteur showed that the mold Penicillium glaucum was metabolizing (þ)-tartaric acid.3 His theory was that the enantioselective transformation of tartaric acid by microorganisms implies selective interactions of (þ)-tartaric acid with key chiral molecules within the microorganisms. Thefirstreportontherelationshipbetweenenantioselectivityandapharmacologicaleffectappearedin1886.Itwasreported that(þ)-asparaginehadasweettasteandthat((cid:2))-asparaginehadnotaste.4Again,Pasteurinterpretedtheseresultsbysuggestingthat the interactions of the two enantiomers of asparagine with the chiral biological receptors were different. Many studies were performed during the mid-1880s and mid-1920s showing that the two enantiomers of an active compound can have different pharmacologicalpropertiesand,inthe1890s,duetotheimportantworkofEmileFischer,thestereoselectiveactionofenzymeson substrateswasdetermined.EmileFischerconcludedthattheshapeandstereochemicalconfigurationofamoleculeinfluencethe suitabilityofamoleculetoserveasasubstrateforanenzyme.Heproposedthehypothesisthatforanenzymetobeactiveona substrate,thetwohavetofitasalockanditskey.5Manyinvivostudiesofenantioselectivemetabolismwerecarriedoutduringthe late1800sandearly1900s.In1926,RoberstonCushnypublishedareviewonthestudiesofenantioselectivepharmacologyand metabolism that had been achieved during the previous 40 years. Thus, in the twentieth century, researchers were aware that a ComprehensiveChirality,Volume1 http://dx.doi.org/10.1016/B978-0-08-095167-6.00101-4 1 2 Introduction: TheImportance ofChirality inDrugs andAgrochemicals relationshipexistedbetweentheenantioselectivityofdrugsandthebiologicalactivityofthelatterbutitwasacademicresearchand thiswasmainlyignoredbycompanies.Untilthe1900s,medicinalchemistsusedtheconceptthat‘similarmoleculesexertsimilar biologicalactivies’andtheywereusingthisconcepttomodifythestructureofbiologicallyactivecompounds.6–11Severalsurprising structure–activityrelationshipsdemonstratedthatchemicallysimilarcompoundscanhavesignificantlydifferentbiologicalactions and activities. Due to some tragedies in the twentieth century, the thalidomide strategy (in the 1950s) probably being the most tragic,thesituationchangedandthousandsofenantiomersofnaturalandnonnaturalproductswereidentifiedandexaminedfor their pharmacological properties and therapeutic potential. Today, researchers and drug companies are aware of the different biologicaleffectsofenantiomersanddiastereoisomersaswellastheirdifferentpharmacokinetics.12–29By1987,55%ofallclinically useddrugswerebasedonchiralmoleculesand98%ofthesewereenantiomericallyenrichedandpure.Nowadays,itisrecognized thatabiologicalreceptorreceivesasuitablemolecule,thenthereceptoremitsamessagetosometargetsintheorganism,andthis signalcanaltertheactivityofthecell.Inadditiontodrugs,theagrochemicalindustryhasbecomeawarethattheactivityoftwo enantiomerscanbedifferentoninsectsandplantsandthattheirrateoftheirtransformationintheecosystemcanbedifferent.Four mainsimpletypesofrelativebiologicaleffectscanbeencounteredandafewexamples,obtainedfromthedifferentchaptersofthis book,areusedtoillustrateeachtypeofbioactivecompounds: – Theenantiomershavethesamebiologicalactivity(Type1); – theenantiomershavequalitativelyequalbiologicaleffectsbuttheirintensitiescanbedifferent(Type2); – onlyoneenantiomerisbiologicallyactive(Type3); – twoenantiomershaveverydifferentbiologicalproperties(Type4). 1.1.1.1 TheEnantiomersHave theSame BiologicalActivity(Type 1) AsanexampleofaType1compound,wecanconsidericlaprim,whichwasdevelopedbyRocheandArpida(seeChapter1.8).This compoundisusedinthetreatmentofbacterialinfectionsandbothenantiomersexhibitsimilaractivityagainstthedihydrofolate reductaseenzyme(DHFR)andasimilarantimicrobialactivityagainstabroadrangeofbacteria.Onepossibleexplanationforthe similarinhibitoryandantibacterialactivityofbothenantiomerscouldbethecomparablebindingofthetwoenantiomerswiththe biological target. This emerges from the observation of the crystal structure analysis in addition to the analysis of low-energy conformation.Whensuperimposingthediaminopyrimidinerings,bothenantiomersalignpartofthecyclopropylringsclosetoa similarspace.Thisobservationmightbeanexplanationfortheircomparablebindingproperties(Figure1). H N N NH H N N NH 2 2 2 2 N N O OMe O OMe OMe OMe (R)-Iclaprim (S)-Iclaprim Figure1 Structureof(R)-iclaprimand(S)-iclaprim. 1.1.1.2 TheEnantiomersHave QualitativelyEqual BiologicalEffects butTheirIntensities can beDifferent(Type 2) When the effects of the enantiomers are qualitatively equal but their intensities are different, it has been assumed that both enantiomers are associated with the same type of receptors. For example, (S)-citalopram is a potent agent against major depression,panicdisorder,andgeneralizedanxietydisorder,whereasits(R)-enantiomerismuchlessactive(Figure2).Wehaveto pointoutthat,afterclinicalstudies,boththeracemateaswellasthesingle(S)-enantiomerarebeingsoldsuccessfully.30 NC O NH 2 F (S)-Citalopram Figure2 Structureof(S)-citalopram. Introduction: TheImportance ofChirality inDrugs andAgrochemicals 3 1.1.1.3 OnlyOneEnantiomer Possesses thePharmacological Activity(Type 3) ChloramphenicolisaType3compound(seeChapter1.10).Thiscompound,discoveredin1947fromafermentationbrothof Streptomycesvenezuelae,possessestwoasymmetriccentersandithasbeenobservedthatthenaturaldiastereomerwiththe1Rand 2R configurations displays significant antibacterial activity. The mode of action of chloramphenicol consists of blocking the peptidyltransferaseactivitybypreventingthebindingoft-RNAtotheAsiteoftheribosome31,32(Figure3). OH HN O O N 2 Cl Cl Chloramphenicol Configurations Relative potency (1R,2R) 100 (1S,2S) 0.4 (1S,2R) 0.4 (1R,2S) 2 Figure3 Relativepotencyofchloramphenicolisomers. TheimportanceoftheconfigurationofthestereogeniccentershasalsobeenobservedforsyntheticdrugssuchasforTMC207 anditsstereoisomers.TMC207wasdiscoveredandoptimizedatJohnson&JohnsonPharmaceuticalResearch&Development(see Chapter1.6).ItisanewantimycobacterialagentwhichinhibitsmycobacterialATPsynthaseanditisalsoactiveagainstbothdrug- susceptibleandmultidrug-resistantstrainsofMycobacteriumtuberculosis.33Amongallthestereoisomers,theTMC207,possessingR andSconfigurationsfortheadjacentstereogeniccenters,wasshowntohavethebestinhibitoryactivityonapanelofmycobacteria. TMC207isaverypromisingcompoundandiscurrentlyinPhaseIIbofclinicaltrialsforMDR-TB(Figure4). Br HO N OMe N(Me) 2 TMC207 Figure4 StructureofTMC207. 1.1.1.4 TheTwoEnantiomersHave Different BiologicalProperties(Type 4) OrnidazoleisacompoundofType4(Figure5),whichisananti-infectiveusedasaracemicmixture.However,ithasbeenobserved thatthe(S)-enantiomercouldhaveanti-infertilityactivityinmaleanimals34(seeChapter1.8). N N O N 2 OH Cl (S)-Ornidazole Figure5 Structureof(S)-ornidazole. 4 Introduction: TheImportance ofChirality inDrugs andAgrochemicals Probably, the most striking example of a Type 4 enantiomer is thalidomide, which caused a major tragedy. Racemic thalidomide was introduced on the market in the late 1950s as a sedative and hypnotic drug. The (R)-enantiomer is an effective sedative medication and the (S)-enantiomer may be teratogenic.35 (S)-Thalidomide was shown to be responsible for over2000cases of birth defects in children born towomenwhotook the drugduring pregnancy (Figure 6)(see Chapters 1.4 and1.8). O N O N O NH NH O O O O (S)-Thalidomide (R)-Thalidomide Figure6 Structureof(S)-thalidomideand(R)-thalidomide. In view of these considerations, one has to be aware that the racemization or the stereomutation of a drug can occur in a biologicalenvironment.Theeffectcanbedetrimentalifoneoftheisomersistoxic.Thisprocesscanoccurwhenastereogeniccenter isepimerizedunderbasicoracidicconditions.Stereomutationscanoccurduringsyntheticoperations,biochemicalassays,andinvivo studies,andithasbeenobservedwhenana-keto-heterocyclefunctionalityispresentontheC-terminalofapeptidicstructure.Inthe caseofoxazepan,acentralnervoussystemdrugthatbindstobenzodiazepinereceptors,arapidinterconversionoftheenantiomers was observed (t ¼a few min at 371C at pH 7.4). This compound has been marketed as a racemate (see Chapter 1.4) 1/2 (Figure7).36–39 H O N OH Cl N Ph Oxazepan Figure7 Structureofoxazepan. Eventhoughtheinterconversionoftheenantiomersisnotdetrimentalforoxazepan,forsomecompounds,itcanbedangerous as for thalidomide. For the latter compound, the in vitro racemization process can take place in contact with plasma proteins suchashumanserumalbumin.Theracemizationiscatalyzedbyalbumin,phosphate,hydroxideoraminoacids,especiallybybasic amino acids such as L-arginine and L-lysine (the t1/2 for the racemization of thalidomide is approximately 2.5h at pH 7.4 and at371C). Insomecases,oneenantiomercanbeinterconvertedintotheotherenantiomerbymetabolism37,40–42asforibuprofen(see Chapter 1.4) (Figure 8). Of the two enantiomers, the (S)-enantiomer is the bioactive compound that inhibits cyclooxygenase invitroandinvivo.However,itwasfoundthatinvivoeachenantiomerisinterconvertedby2-arylpropionyl-CoAepimerase.Thus, thelessbioactive(R)-isomerproducestheactive(S)-isomerandviceversa.Duetothisracemization,ibuprufeniscommercialized asaracemate.43,44MoreexamplesaregiveninChapter1.4. Me CO H 2 i-Bu Ibuprofen Figure8 Structureofibuprofen. Asracemicdrugsorenantiomericallyenricheddrugsmaybepotentiallyunsafeforpatients,43–46thestudyofchiraldrugsas single enantiomers gained momentum in the 1990s. In1992,in the United States,formalregulatory guidance for newstereo- isomericdrugswasissuedfromtheFoodandDrugAdministration(FDA)andthenbytheEuropeanUnion(EU),Australia,Japan, Introduction: TheImportance ofChirality inDrugs andAgrochemicals 5 etc.47,48Fortheapprovalofnewdrugs,separationandcharacterizationhastobecarriedoutforeachstereoisomerifpossible,and alsoevaluationofthebioactivity,pharmacodynamics,pharmacokinetics,andtoxicologyofeachisomer.Arelevantrationalealso has to be provided for the stereoisomer selected for development and marketing.49 Stereochemical identity tests and assay methods has to be established for the active ingredient (the drug substance) and for the final formulation (drug product). However,thedevelopmentofaracemate,aswehavepointedout,ispossibleundercertaincircumstances. 1.1.2 Agrochemicals Asplantsandinsectsarechiralsystems,onecanassumethattheinteractionswithoneenantiomerofaspecificcompoundarealso important.Duetothisconsideration,thesynthesisofrelativelyinexpensive,safe,andhighlyefficientpesticides,herbicidesaswell asantifungalderivativesisimportantinmodernagriculturetosupplythedemandoffoodandenergyintheworld.Asfordrugs, frequently, only one of the stereoisomers or enantiomers is biologically active or at least more active than the other isomer. Probably,whenstereogeniccentersarepresentinpesticides,fungicides,orherbicides,fewerbiologicaltestshavebeencarriedout than for drugs to determine the relative biological activity of each stereoisomer or enantiomer. However, nowadays, synthetic effortsintheresearchanddevelopmentofagrochemicalcompanieshaveledtosomerefinementsandtotheintroductiononthe marketofenantiomersandenantio-enrichedmixtures. In1996,Williamsreportedthatchiralmoleculesrepresent25%ofalltheagrochemicalcompoundsand26%ofthetotalvalue of the market, whereas single isomers or enantio-enriched compounds represent only 7% of the total value of the market.50 Among the 728 pesticides registered, 200 contain one or more chiral centers and only 38 of these (5.2%) are produced in enantiomericallyenrichedforms.Forfungicides,onlyafewofthemareproducedinenantiomericallyenrichedformsand,among the191fungicidesregistered,only65containoneormorechiralcenters.Inmanycases,thespecificbiologicalactivityofthese enantiomershasnotbeeninvestigatedandonlysixcasesofenantiomericallyenrichedmixturesofsyntheticfungicideshavebeen producedandcommercialized. Asfordrugs,thesamebehaviorwasnoticedasoneenantiomercanbemoreactivethantheotherisomersuchas,forexample, benthiavalicarb, which is a fungicide developed by Kumiai Chemical Industry Co., Ltd. It has been observed that of the four isomersofbenthiavalicarb,onlythe(R,S)-isomerisbiologicallyactive.51Incontrast,iprovalicarb,asystemicfungicide,whichalso has two asymmetric centers, is sold by Bayer as a mixture of (S,S)- and (S,R)-diastereomers, and no reports can be found on the relative activity of the two diastereoisomers. However, an excellent fungicidal activity was found for the (R,S)-isomer on PhytophtoraontomatoandonPlasmoparaongrape52(Figure9). O O O O O O HN HN HN N HN (S) HN (S) HN (S) O O O F S (R) (S) and (R) (R) Benthiavalicarb Iprovalicarb (R,S)-Iprovalicarb Figure9 Fungicides. In the case of insecticides and according to the Insecticide Resistance Action Committee (IRAC) classification, 245 active compoundsareregisteredasinsecticidesandacaricidesand72ofthesehaveachiralcenter.53,54Evenifthereisadifferencein biological activity between the enantiomers, most of these compounds are commercialized as racemates. Only 12 synthetic insecticidesandninenaturalproductsaresoldassingleenantiomersorenantiomericallyenrichedmixtures. Indoxacarb is a broad-spectrum lepidopteran insecticide active on contact and ingestion, and this compound was com- mercialized by Dupont in 2000.55,56 Initially, its development was planned as a mixture of racemates but bioassays on the enantiomersshowedthatthe(S)-enantiomerwastwiceasactiveastheracemicmixtureandthatthe(R)-enantiomerwasinactive (Figure 10). Thus, enantioselective synthesis of indoxacarb was carried out; even though indoxacarb is only enantiomerically enriched(S/R¼75:25),itcorrespondstoanapproximately30%decreaseinapplicationratescomparedwiththeracemate,which representsasubstantialbenefitfortheenvironment.Anotherexampleislambda-cyhalothrin(Syngenta),whichisapyrethroid insecticide whose biological activity is limited to the isomer possessing the (1R) configuration; the (1S)-isomer is at least 100 timeslesspotentthanthe(1R)-isomer. Forherbicides,theHerbicideResistanceActionCommittee(HRAC)hasclassified292activecompoundsand62oftheseare chiral. Currently, for herbicides,7% is supplied in anenantio-enriched formbut enantio-enriched compounds are being com- mercializedastheyaremuchmoreenvironmentallysafe.AfterWorldWarII,mecopropanddichloroprop,whichbelongtothe 6 Introduction: TheImportance ofChirality inDrugs andAgrochemicals O CH3 N O CN N N F C 3 OPh O O Cl OCF 3 Cl CO Me 2 (S)-Indoxacarb Lambda cyhalothrin Figure10 Insecticides. auxin family of herbicides, were introduced on the market as racemates; even though its herbicidal activity is related to the (R)-enantiomer,itwasonlyin1988thatthe(R)-isomerwasintroducedonthemarketbyBASF.Mecopropanddichloropropwere thefirstherbicideswhoseenvironmentaleffectswerestudiedusingenantio-discriminatingmethods.Asonlythe(R)-isomerwas herbicidally active the following question can be raised: what is the behavior of the (S)-enantiomer in the environment? The biodegradationofthe(R)-and(S)-isomerswasstudiedandapreferentialdegradationofthe(S)-isomerwasobservedinbroadleaf weedsandinsoilbutnotingrass.57ItwasalsoobservedthatseweragesludgeinSwitzerlandcoulddegradethe(S)-enantiomer of dichloroprop from the racemic mixture before the (R)-enantiomer but this was not the case for mecoprop.58 Furthermore, the Brazilian pasture soil degraded the (S)-dichloroprop faster than the (R)-isomer whereas the forest soil degraded the active (R)-isomer at least as fast as the (S)-isomer or even faster.59 This example shows that the biodegradability of agrochemicals is complexandreinforcesthefactthattheuseofenantiomersorenantio-enrichedcompoundscandecreasetheecotoxicityifwell studied(Figure11). O Cl O O O OH OH Cl Cl (R)-Mecoprop (R)-Dichlorprop Figure11 Herbicides. Whatever the biologically active compounds, drugs, fungicides insecticides, or herbicides, all the examples reported in this chapterstresstheneedforenantio-enrichedmoleculesasfarasthebiologicalsystemisconcerned.Thisisastrongincentiveto registerenantiopureor,atleast,enantio-enrichedactiveingredients.Itisalsoastrongincentivetodevelopefficient,nonexpensive methods to synthesize enantiomers and one of them is probably asymmetric hydrogenation, commonly used in companies (see Chapter 1.9), or reduction, which can be easily scalable. The development of new, clean, efficient, chemoselective, and nonracemizatingreagentssuchasforexample,peptidiccouplingreagentstoproducepeptidesorproteinswithoutpurifications (seeChapter1.6)orreagentsthatallowtheintroductionoffluorineatomsinanenantioselectivemannerinordertoincreasethe activityofthecompounds(seeChapter1.5)isimportant.Thediscoveryofnewactiveandselectivebiologicallyactivecompounds couldbearesultofserendipityorobservations,andagoodstartingpointmaybenaturalproducts,which,inmostcases,arein enantiomerically pure forms as Nature has already done a selection. Starting from natural products, one can access several compoundsandoneofthemmaybefoundtobemoreselectiveandpotentthanthenaturalproductitself(seeChapter1.10). Furthermore, and not the least important, it is crucial to develop sensitive enantioselective analytical methods to verify the enantiomericpurityofthesynthesizedcompounds(seeChapter1.3). References 1. Mislow,K.TopicsStereochem.1999,22,1. 2. Pasteur,L.Compt.Rend.Acad.Sci.1858,46,615–618. 3. Pasteur,L.Compt.Rend.Sci.1860,51,298–299. 4. Cushny,A.R.BiologicalRelationsofOpticallyIsomericSubstances;TheWilliamsandWilkinsCompany:USA,1926,37pp. 5. Ramberg,P.J.ChemicalStructure,SpatialRearrangement,TheEarlyHistoryofStereochemistry;AshgatePublishingLimited:UK,2003,pp268–272. 6. Hansch,C.,Sammes,P.G.,Taylor,J.B.,Eds.ComprehensiveMedicinalChemistry;PergamonPress:Oxford,1990. 7. Wolff,M.E.,Ed.Burger’sMedicinalChemistry,5thed.;JohnWiley&Sons:NewYork,1955. 8. Dean,P.M.,Ed.ThePracticeofMedicinalChemistry;AcademicPress:London,1996. 9. Wermuth,C.G.,Ed.PracticeofMedicinalChemistry;AcademicPress:London,1996. 10. Bohm,H.-J.;Klebe,G.;Kubiniy,H.Wirkstoffdesign.DerWegZumArzneimittel;SpektrumAkademischerVerlag:Heidelberg,1996. 11. Kubinyi,H.In3DQSARinDrugDesign.Vol.2.Ligand–ProteinInteractionsandMolecularSimilarity;Kubinyi,H.,Folkers,G.,Martin,Y.C.,Eds.;Kluwer/ESCOM: Dordrecht,1998,pp225–252. Introduction: TheImportance ofChirality inDrugs andAgrochemicals 7 12. Arie¨ns,E.J.;Soudijn,W.;Timmermans,P.B.M.W.M.StereochemistryandBiologicalActivityofDrugs;BlackwellScientificPublishers:Oxford,1983. 13. Smith,D.F.,Ed.CRCHandbookofStereoisomers:TherapeuticDrugs;CRCPress:BocaRaton,FL,1989. 14. Holmstedt,B.;Frank,H.;Testa,B.ChiralityandBiologicalActivity;AlanR.Liss,Inc.:NewYork,1990. 15. Brown,C.,Ed.ChiralityinDrugDesignandSynthesis;AcademicPress:London,1990. 16. Roth,H.J.;Muller,C.E.;Folkers,G.Stereochemie&Arzneistoffe:Grundlagen-Betrachtungen-Auswirkungen;WissenschaftlicheVerlagsgesellshaft:Stuggart,1998. 17. Lehmann,F.P.A.;RodriguezdeMiranda,J.F.;Arie¨ns,E.J.Prog.DrugRes.1976,20,101. 18. Arie¨ns,E.J.Eur.J.Clin.Pharmacol.1994,26,663. 19. Mason,S.TrendsPharmacol.Sci.1986,7,20–281. 20. Arie¨ns,E.J.;Wuis,E.W.;Veringa,E.J.Biochem.Pharmacol.1988,37,9. 21. Ariens,E.J.TrendsPharmacol.1993,14,68. 22. Testa,B.Pharmacochem.Libr.1993,20,1. 23. Stinson,S.C.Chem.Eng.News1994,19,38. 24. Triggle,D.J.DrugDiscov.Today1997,2,38. 25. Schramm,M.;Thomas,G.;Towart,R.;Franckowiak,G.Nature1983,303,535. 26. Franckowiak,G.;Bechem,M.;Schramm,M.;Thomas,G.Eur.J.Pharmacol.1985,114,223. 27. deTullio,P.;Delarge,J.;Pirotte,B.Curr.Med.Chem.1999,6,433. 28. Hugues,J.;Dockray,G.J.;Hill,D.;etal.Regul.Pept.1996,65,17. 29. Beinborn,M.;Quinn,S.M.;Kopin,A.S.J.Biol.Chem.1998,273,14146. 30. Chen,F.;Marsen,M.B.;Sanchez,C.;Wiborg,O.Eur.Neuropsychopharmacol.2005,15,193–198. 31. Rodriguez-Fonseca,C.;Amils,R.;Garett,R.A.J.Mol.Biol.1995,247,224–235. 32. Schlunzen,F.;Zarivach,R.;Harms,J.M.;etal.Nature2001,413,814–821. 33. Andries,K.;Versasselt,P.;Guillemont,J.;etal.Science2005,307,223–227. 34. Huang,J.;Cao,G.;Hu,X.;Sun,C.;Zhang,J.Chirality2006,18,587–591. 35. Atta-ur-Rahman,J.,Ed.StudiesinNaturalProductsChemistry;ElsevierSciencePublishers:Netherlands,1990,Vol.7;pp3–28andreferencestherein. 36. Reist,M.;Testa,B.;Carrupt,P.-A.HandbookExp.Pharmacol.2003,153,91–112. 37. Baillie,T.A.;Schultz,K.M.StereochemistryintheDrugDevelopmentProcess:RoleofChiralityasaDeterminantofDrugAction,MetabolismandToxicity.InImpactof StereochemistryonDrugandDevelopmentandUse;Aboul-Enein,H.Y.,Wainer,I.W.,Eds.;JohnWiley&Sons:NewYork,1997,Chapter2;pp21–43. 38. Schoetz,G.;Trapp,O.;Schurig,V.Anal.Chem.2000,72,2758–2764. 39. Oxazepam.http://en.Wikipedia.org/wiki/Oxazepam(accessedSeptember2010). 40. Eichelbaum,M.;Gross,A.S.Adv.DrugRes.1996,28,1–64. 41. Davies,N.M.ChiralInversion.InChiralityinDrugDesignandDevelopment;Reddy,I.K.,Melvar,R.,Eds.;MarcelDekker:NewYork,2004,Chapter8;pp351–392. 42. Tegeder,I.;Williams,K.;Geisslinger,G.HandbookExp.Pharmacol.2003,153,341–354. 43. Arie¨ns,E.J.Med.Res.Rev.1986,6,451–466. 44. Testa,B.;Trager,W.F.Chirality1990,2,129–133. 45. Cayen,M.N.Chirality1991,3,94–98. 46. Arie¨ns,E.J.TrendsPharmacol.Sci.1993,14,68–75. 47. Tomaszewski,J.;Rumore,M.M.DrugDevel.Industr.Pharm.1994,20,119–139. 48. Caner,H.;Groner,E.;Levy,L.;Agranat,I.DrugDiscov.Today2004,9,105–110. 49. FDA.Chirality1992,4,338–340,http://fda.gov/Drugs/guidanceComplianceRegulatoryInformation/guidances/umc122883.htm(accessedJuly13,2010). 50. Williams,A.Pest.Sci.1996,46,3–9. 51. Mizutani,H.;Suzuki,J.;Saito,Y.;Ikeda,M.;Yagi,A.J.Pest.Sci.2004,29,87–95. 52. Seitz,T.;Wollweber,D.;Brandes,W.;Dehne,H.W.(Bayer)SubstituierteValinamidDerivate.DE4026966,1992. 53. IRACModeofactionClassificationv6.3.www.irac-online.org(accessedJuly2009). 54. Kra¨mer,W.;Schirmer,U.ModernCropProtectionCompounds;Wiley:Weinheim,2007,Vol.3. 55. McCann,S.F.;Annis,G.D.;Shapiro,R.;etal.PestManag.Sci.2001,57,153–164. 56. McCann,S.F.;Cordova,D.;Andaloro,J.T.;Lahm,G.P.SodiumChannelBlockingInsecticides,Indoxacarb.InModernCropProtectionCompounds;Kra¨mer,W., Schirmer,U.,Eds.;Wiley:Weinheim,2007,Vol.3,Chapter29.4;pp1031–1047. 57. Schneiderheinze,J.M.;Armstrong,D.M.;Berthod,A.Chirality1999,11,330–337. 58. Zipper,C.;Bollinger,C.;Fleiscmann,T.;etal.Biodegradation1999,10,271–278. 59. Lewis,D.L.;Garisson,A.W.;Wommack,K.E.Nature1999,401,898–901. 1.2 Importance of Chirality in the Field of Anti-infective Agents DLesuisse, Sanofi,Chilly-Mazarin, France MTabart, Sanofi,Vitry-Alfortville, France r2012ElsevierLtd.Allrightsreserved. 1.2.1 Introduction 8 1.2.2 Antiinfectives fromNatural Origin 9 1.2.2.1 Antiinfectives That are UnmodifiedNaturalProducts 9 1.2.2.2 Antiinfectives from Hemisynthetic Origin 9 1.2.2.2.1 Theresulting chirality isidentical tothe chirality ofthe original natural product: b-lactamines derived from 6-aminopenicillanic acid and7-aminocephalosporanic acid 9 1.2.2.2.2 Theresulting chirality isdifferent from the chirality of the original natural product: deepermodifications ofthe b-lactam scaffold ofb-lactamines 11 1.2.2.2.3 Thescaffold is different from the original natural product: non-b-lactam compounds 14 1.2.2.2.4 Introduction of afluorine ata chiral center ofantiinfectives 15 1.2.2.2.4.1 Replacement ofa hydrogen bya fluorine atom: the case ofketolides 15 1.2.2.2.4.2 Replacement ofa carbonyl functionby afluorine: the case ofpristinamycins 17 1.2.2.3 Antiinfectives Obtained by Total Synthesis 17 1.2.3 Antiinfectives fromNonnaturalOrigin 18 1.2.3.1 The TwoEnantiomers HavetheSameBiological Activity 18 1.2.3.2 The TwoEnantiomers HaveQuite Different Biological or Pharmacological Activity 20 1.2.3.3 One Enantiomer Bears thePharmacological Activity 21 1.2.4 Conclusion 27 Acknowledgments 27 References 27 Glossary thepenicillinsandthecephalosporins.Thesebugsare Gram-negativebacteria Prokaryoticorganismssuchas responsibleforlife-threateningnosocomialinfectionssuch EscherichiacoliorPseudomonasaeruginosathatarenotableto assepticemia. retainthecrystalvioletstainofGramcolorationbecauseof QRSA/QSSA Quinolone-resistant(/sensitive) theirthinpeptidoglycanlayer.Outsidethislayerisfound Staphylococcusaureus. theoutermembranecontaininglipopolysaccharide. Resistance Phenomenonofadaptationofbacteriatoa Aminoglycosidessuchaskanamycin,gentamicin,and certainclassofantiinfectiveagentsastheresultofa tobramycinhaveamainlyGram-negativespectrumof selectionpressurestemmingfromtheuseofthisagentto activity. treatinfectionscausedbythesebacteria.Thisadaptationof Gram-positivebacteria Prokaryoticorganismssuchas bacteriatodrugspreventsthetreatmentofthe StaphylococcusaureusorStreptococcuspneumoniaethatare correspondinginfectionbythedrugwhichhasbecome abletoretainthecrystalvioletstainofGramcoloration inactiveduetogeneticmutationsthatcanbetransmittedto becauseofthehighamountofpeptidoglycanintheircell otherbacteria,evenfromotherspecies. wall.Theycommonlylacktheoutermembranefoundin VREF Vancomycin-resistantEnterococcusfaecalisandE. Gram-negativebacteria.Fusidicacidisatypicaldrugwitha faeciumwhichareGram-positivebacteriaresistantto Gram-positivespectrumofactivity. vancomycinandresponsibleforextremelysevere MRSA Methicillin-resistantStaphylococcusaureusthathas nosocomialinfectionssuchasendocarditis. developedresistancetob-lactamantibiotics,whichinclude 1.2.1 Introduction Duetothefactthatantibiotics,asotherdrugs,interactwithchiraltargetsinbacteriasuchasenzymes,receptors,ribosomes,etc., thechiralityoftheantiinfectiveagenthasadramaticinfluenceontheinvivopropertiesofthedrug.Inotherwords,theinversion ofoneorseveralchiralcentersofthedrugcanresultinthelossofantiinfectiveproperties.Manysuchexamplescanbefound amongtheantiinfectivecompounds.Forinstance,intheanthracyclineantibioticsfamily,whichincludesimportantclinicaldrugs usedinthetreatmentofhumancancer,epimerizationoftheC9-positionleadstoadramaticlossoftheDNA-bindingproperties.1 Linezolid,anoxazolidinone,thelatestclassofantiinfectiveagents,isactiveonlywhentheacetamidomethylgrouppossessesthe (S)absoluteconfiguration2(Figure1). 8 ComprehensiveChirality,Volume1 http://dx.doi.org/10.1016/B978-0-08-095167-6.00112-9 Importance ofChirality inthe FieldofAnti-infective Agents 9 O OH R1 O N R2 O F N O OMe O OH O O O N H NH OH 2 R1 = H, R2 = OH 9-Deacetyl daunorubicin, active Linezolid R1 = OH, R2 = H 9-epi Deacetyl daunorubicin, inactive Figure1 Structuresof9-Deacetyldaunorubicin,9-epiDeacetyldaunorubicinandLinezolid. Theobjectiveofthischapterisnottobecomprehensivebuttopresentafewinterestingcasestudiestoillustratethescopeand synthesisofsomerelevantexamplesthatareemblematicoftheinfluenceofchiralityonthebiologicalpropertiesofthedrug. Naturalproducts areofparamountimportancein thefieldof antiinfectiveagentsas60–80%ofthem are,orderivedfrom, natural origin.3 In addition, more than 80% of natural products incorporate at least one chiral center, with 15% of them incorporating11stereocentersormore.4Boththesefactsstresstheimportanceofchiralityintheantiinfectivefield.Inthischapter, wewillsequentiallyaddresstheantiinfectivesoriginatingfromnaturalproductsandthosethataretheresultofdrugdesignand syntheticchemistryefforts. 1.2.2 Antiinfectives from Natural Origin InthisSection,wewilldistinguishbetweentheantibioticsthatareusedasproducedbythelivingorganismswithnostructural modification and those that are produced by hemisynthetic pathways from highly functionalized intermediates from fermen- tation,andfinallytheonesthatareproducedbytotalsynthesis. 1.2.2.1 Antiinfectives ThatareUnmodified Natural Products Severalcommonlyusedantiinfectiveagentsareunmodifiednaturalproducts.Amongthese,wecanciteerythromycin,rifampicin, vancomycin,mupirocin,aminoglycosideslikestreptomycin,andsteroidalantiinfectiveslikefusidicacid(Figure2). Thehighcomplexityoftheirchemicalscaffoldsbearingmanychiralcenters,alongwithagoodbiologicalactivitybecauseof theunmodifiedprinciples,accountforthefactthattheyarestillusedessentiallyasproducedbyfermentation. 1.2.2.2 Antiinfectives fromHemisynthetic Origin Antibiotics currently on the market largely arise from hemisynthesis: b-lactamines (penams, cephems, penems, and mono- bactams),macrolides,pristinamycinstocitesomeofthemostprominentclasses.Wewilldividethissectionasafunctionofthe resultingchiralitythatcanbeidenticaltoordifferentfromthechiralityoftheoriginalnaturalproduct. 1.2.2.2.1 The resulting chirality is identical to the chirality of the original natural product: b-lactamines derived from 6-aminopenicillanic acid and 7-aminocephalosporanic acid Since the discovery, in 1929, by Fleming that a strain of the mold Penicillium was producing an antibacterial agent, which he namedpenicillin,anditsisolationadecadelater,theantibacterialfieldhasbeendevelopedtremendously.Theproductionofthe 6-aminopenicillanicacid(6-APA)and7-aminocephalosporanicacid(7-ACA)byfermentationandenzymatichydrolysismadeit possibletosynthesizemanyanalogsvaryingbythe6-and7-positionofthesidechain.Todate,severaloftheseantibacterialsare onthemarketandheavilyused.Forexample,amoxicillindirectlyproducedfrom6-APA(Scheme1),andatleast20analogsof cephalosporinderivedfrom7-ACA,likecefuroxime,ceftazidime,ceftriaxone,orcepfpirome,thecloseststructurallyrelatedto7- ACAbeingcefotaxime. Thesynthesisofcefotaxime5isquitestraightforwardwiththeaminothiazolesidechainobtainedbycondensationofthiourea withtheoximederivativefrom2,3-dioxo-butyricacid(Scheme2). Cefotaxime,alongwithmanyothercephalosporinsonthemarket,incorporatesanoximeofsynconfigurationrelativetothe cephemcore.TheimportanceofthisfeatureforthebiologicalactivitywasdiscoveredatRousselUclafandpavedthewayforall modifiedoximesinthispositionwithinvariablythesynconfiguration.5 Amongthevariouscephalosporinsindevelopment,thecaseofcatechosporinsisinteresting.Cephalosporins,widelyusedas antibacterial drugs for the treatment of infections, have long been studied and modified chemically because of the continuing needtoproduceincreasinglytargetedandeffectivetherapies.6Thisismostlyduetotheevolutionofresistanceofawiderangeof 10 Importance of Chiralityin theFieldofAnti-infective Agents O MeO HOOC HO OH OH O OH OH H HO NMe2 OH OH HO O O NH O O O O O O OMe O O O HO OH N H Erythromycin OH O N O Rifampicin N Fusidic acid OH NHMe HO H O Cl N NH O O HN NH2 NH2 H O HN O HO OH HO O NH H O HO O NH H2N NH OH O O NH2 O O Cl HO HN O O H H O O OH OH O H NH O MeNH OH HO OH H OH OH OH O N Streptomycin H Vancomycin OH O O OH O O OH Mupirocin O OH OH Figure2 Structuresoferythromycin,rifampicin,fusidicacid,vancomycin,streptomycinandmupirocin. bacteriaconferredbynewb-lactamases7ordifferentmechanisms.Equallyimportanthasbeenthenecessitytofindagentseffective againstspecificorganismssuchasPseudomonasaeruginosa,whichhaveprovedelusivetotreatmentbyantibacterialdrugsinthe past.8 Consequently, manyarticles havebeen published concerning invitrostructure–activity relationship studies in thisfield.9 The first report by Mochida et al.10 that the cephalosporin M14659, incorporating a catechol on the amide chain, showed an excellent antibacterial activity in vitro against other Gram-negative bacteria and opened a new avenue of improving thesecompounds.ItwashypothesizedthatM14659maybeactivelytakenupwithFe3þ intobacterialcells,probablythroughthe iron-transport systems and, thus, kills the bacteria. It was later shown that these outstandingly low minimum inhibitory con- centrations(MICs)areduetotheutilizationofthetonB-dependentiron-transportprocess.11Subsequently,severalauthorshave confirmed these interesting properties of catechol b-lactams,in particular penicillins,12 monobactams,13and cephalosporins.14 These compounds display an exceptional in vitro activity and b-lactamase stability notably against Enterobacteriaceae and P. aeruginosa.15 However,Beebyetal.in1977,showedthattheinsertionofatransdoublebondresultsinvinylogouscephalosporinssuchas compoundBdisplayinghigherpotencythanthenonvinylanalogA16(generalreview17)(Figure3). Thisobservationpromptedscientistsfromseveralpharmacompaniestoincorporatebothmodificationsintoonecompound. ThisgaverisetoseveralveryactivecompoundslikeRU5986318orLB10552219displayingaverybroadspectrumofGram-positive andGram-negativeantibacterialactivity,includingtheresistantPseudomonasstrains.Itisworthnotingthatherealsotheabsolute configurationofthedihydroxymandelicacidhastobe(S)foroptimalantibacterialactivity(Figure4).ThesynthesisofRU59863 isdepictedinSchemes3and4.20Thechiralityofthesidechainwasobtainedbyachiralseparationoftheenantiomers.Theside chainwasthencondensedto6-ACAafterintroductionofthequinolylmoiety(Scheme4).

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.