ebook img

Compound Renewal Processes (Encyclopedia of Mathematics and its Applications, Series Number 184) PDF

381 Pages·2022·2.611 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Compound Renewal Processes (Encyclopedia of Mathematics and its Applications, Series Number 184)

COMPOUND RENEWAL PROCESSES Compoundrenewalprocesses(CRPs)areamongthemostubiquitousmodelsused inapplicationsofprobability.Atthesametime,theyareanaturalgeneralizationof randomwalks,themostwell-studiedclassicalobjectsinprobabilitytheory.This monograph,writtenforresearchersandgraduatestudents,presentsthegeneral asymptotictheoryandgeneralizesmanywell-knownresultsconcerningrandom walks.ThebookcontainsthekeylimittheoremsforCRPs,functionallimit theorems,integro-locallimittheorems,largeandmoderatelylargedeviation principlesforCRPsinthestatespaceandinthespaceoftrajectories,including largedeviationprinciplesinboundarycrossingproblemsforCRPs,withanexplicit formoftheratefunctionals,andanextensionoftheinvarianceprincipleforCRPsto thedomainofmoderatelylargeandsmalldeviations.Applicationsestablishthekey limitlawsforMarkovadditiveprocesses,includinglimittheoremsinthedomainsof normalandlargedeviations. EncyclopediaofMathematicsandItsApplications Thisseriesisdevotedtosignificanttopicsorthemesthathavewideapplicationin mathematicsormathematicalscienceandforwhichadetaileddevelopmentofthe abstracttheoryislessimportantthanathoroughandconcreteexplorationofthe implicationsandapplications. BooksintheEncyclopediaofMathematicsandItsApplicationscovertheir subjectscomprehensively.Lessimportantresultsmaybesummarizedasexercises attheendsofchapters.Fortechnicalities,readerscanbereferredtothe bibliography,whichisexpectedtobecomprehensive.Asaresult,volumesare encyclopedicreferencesormanageableguidestomajorsubjects. EncyclopediaofMathematicsandItsApplications AllthetitleslistedbelowcanbeobtainedfromgoodbooksellersorfromCambridge UniversityPress.Foracompleteserieslistingvisit www.cambridge.org/mathematics. 134 Y.CramaandP.L.Hammer(eds.)BooleanModelsandMethodsinMathematics,ComputerScience, andEngineering 135 V.Berthe´andM.Rigo(eds.)Combinatorics,AutomataandNumberTheory 136 A.Krista´ly,V.D.Ra˘dulescuandC.VargaVariationalPrinciplesinMathematicalPhysics, Geometry,andEconomics 137 J.BerstelandC.ReutenauerNoncommutativeRationalSerieswithApplications 138 B.CourcelleandJ.EngelfrietGraphStructureandMonadicSecond-OrderLogic 139 M.FiedlerMatricesandGraphsinGeometry 140 N.VakilRealAnalysisthroughModernInfinitesimals 141 R.B.ParisHadamardExpansionsandHyperasymptoticEvaluation 142 Y.CramaandP.L.HammerBooleanFunctions 143 A.Arapostathis,V.S.BorkarandM.K.GhoshErgodicControlofDiffusionProcesses 144 N.Caspard,B.LeclercandB.MonjardetFiniteOrderedSets 145 D.Z.ArovandH.DymBitangentialDirectandInverseProblemsforSystemsofIntegraland DifferentialEquations 146 G.DassiosEllipsoidalHarmonics 147 L.W.BeinekeandR.J.Wilson(eds.)withO.R.OellermannTopicsinStructuralGraphTheory 148 L.Berlyand,A.G.KolpakovandA.NovikovIntroductiontotheNetworkApproximation MethodforMaterialsModeling 149 M.BaakeandU.GrimmAperiodicOrderI:AMathematicalInvitation 150 J.Borweinetal.LatticeSumsThenandNow 151 R.SchneiderConvexBodies:TheBrunn-MinkowskiTheory(SecondEdition) 152 G.DaPratoandJ.ZabczykStochasticEquationsinInfiniteDimensions(SecondEdition) 153 D.Hofmann,G.J.SealandW.Tholen(eds.)MonoidalTopology 154 M.CabreraGarc´ıaandA´.Rodr´ıguezPalaciosNon-AssociativeNormedAlgebrasI:TheVidav-Palmer andGelfand-NaimarkTheorems 155 C.F.DunklandY.XuOrthogonalPolynomialsofSeveralVariables(SecondEdition) 156 L.W.BeinekeandR.J.Wilson(eds.)withB.ToftTopicsinChromaticGraphTheory 157 T.MoraSolvingPolynomialEquationSystemsIII:AlgebraicSolving 158 T.MoraSolvingPolynomialEquationSystemsIV:BuchbergerTheoryandBeyond 159 V.Berthe´andM.Rigo(eds.)Combinatorics,WordsandSymbolicDynamics 160 B.RubinIntroductiontoRadonTransforms:WithElementsofFractionalCalculusandHarmonicAnalysis 161 M.GherguandS.D.TaliaferroIsolatedSingularitiesinPartialDifferentialInequalities 162 G.MolicaBisci,V.D.RadulescuandR.ServadeiVariationalMethodsforNonlocalFractionalProblems 163 S.WagonTheBanach-TarskiParadox(SecondEdition) 164 K.BroughanEquivalentsoftheRiemannHypothesisI:ArithmeticEquivalents 165 K.BroughanEquivalentsoftheRiemannHypothesisII:AnalyticEquivalents 166 M.BaakeandU.Grimm(eds.)AperiodicOrderII:CrystallographyandAlmostPeriodicity 167 M.CabreraGarc´ıaandA´.Rodr´ıguezPalaciosNon-AssociativeNormedAlgebrasII:Representation TheoryandtheZelmanovApproach 168 A.Yu.Khrennikov,S.V.KozyrevandW.A.Zu´n˜iga-GalindoUltrametricPseudodifferentialEquations andApplications 169 S.R.FinchMathematicalConstantsII 170 J.Kraj´ıcˇekProofComplexity 171 D.Bulacu,S.Caenepeel,F.PanaiteandF.VanOystaeyenQuasi-HopfAlgebras 172 P.McMullenGeometricRegularPolytopes 173 M.AguiarandS.MahajanBimonoidsforHyperplaneArrangements 174 M.BarskiandJ.ZabczykMathematicsoftheBondMarket:ALvyProcessesApproach 175 T.R.Bielecki,J.JakubowskiandM.Niewe¸głowskiStructuredDependencebetweenStochasticProcesses 176 A.A.Borovkov,V.V.UlyanovandMikhailZhitlukhinAsymptoticAnalysisofRandomWalks: Light-TailedDistributions 177 Y.-K.ChanFoundationsofConstructiveProbabilityTheory 178 L.W.Beineke,M.C.GolumbicandR.J.Wilson(eds.)TopicsinAlgorithmicGraphTheory 179 H.-L.GauandP.Y.WuNumericalRangesofHilbertSpaceOperators 180 P.A.MartinTime-DomainScattering 181 M.D.delaIglesiaOrthogonalPolynomialsintheSpectralAnalysisofMarkovProcesses 182 A.E.BrouwerandH.VanMaldeghemStronglyRegularGraphs 183 D.Z.ArovandO.J.StaffansLinearState/SignalSystems Encyclopedia of Mathematics and Its Applications Compound Renewal Processes A. A. BOROVKOV SobolevInstituteofMathematics,Russia Translatedby ALEXEY ALIMOV SteklovInstituteofMathematics,Moscow UniversityPrintingHouse,CambridgeCB28BS,UnitedKingdom OneLibertyPlaza,20thFloor,NewYork,NY10006,USA 477WilliamstownRoad,PortMelbourne,VIC3207,Australia 314–321,3rdFloor,Plot3,SplendorForum,JasolaDistrictCentre, NewDelhi–110025,India 103PenangRoad,#05–06/07,VisioncrestCommercial,Singapore238467 CambridgeUniversityPressispartoftheUniversityofCambridge. ItfurtherstheUniversity’smissionbydisseminatingknowledgeinthepursuitof education,learning,andresearchatthehighestinternationallevelsofexcellence. www.cambridge.org Informationonthistitle:www.cambridge.org/9781009098441 DOI:10.1017/9781009093965 ©A.A.Borovkov2022 Thispublicationisincopyright.Subjecttostatutoryexception andtotheprovisionsofrelevantcollectivelicensingagreements, noreproductionofanypartmaytakeplacewithoutthewritten permissionofCambridgeUniversityPress. Firstpublished2022 AcataloguerecordforthispublicationisavailablefromtheBritishLibrary. LibraryofCongressCataloging-in-PublicationData Names:Borovkov,A.A.(AleksandrAlekseevich),1931-author.| Alimov,Alexey,translator. Title:Compoundrenewalprocesses/A.A.Borovkov;translatedbyAlexeyAlimov. Description:Cambridge;NewYork:CambridgeUniversityPress,2022.| Series:Encyclopediaofmathematicsanditsapplications| Includesbibliographicalreferencesandindex. Identifiers:LCCN2021054195(print)|LCCN2021054196(ebook)| ISBN9781009098441(hardback)|ISBN9781009093965(epub) Subjects:LCSH:Limittheorems(Probabilitytheory)|Deviation (Mathematics)|BISAC:MATHEMATICS/Probability&Statistics/General Classification:LCCQA273.67.B672022(print)|LCCQA273.67(ebook)| DDC519.2–dc23/eng20220215 LCrecordavailableathttps://lccn.loc.gov/2021054195 LCebookrecordavailableathttps://lccn.loc.gov/2021054196 ISBN978-1-009-09844-1Hardback CambridgeUniversityPresshasnoresponsibilityforthepersistenceoraccuracyof URLsforexternalorthird-partyinternetwebsitesreferredtointhispublication anddoesnotguaranteethatanycontentonsuchwebsitesis,orwillremain, accurateorappropriate. Contents Introduction pagexi 1 MainLimitLawsintheNormalDeviationZone 1 1.1 PreliminaryResults 1 1.1.1 ConvergenceofDistributionsandMomentsofSome FunctionalsofCPRs 1 1.1.2 CRPswithStationaryIncrements 5 1.1.3 StrongLawofLargeNumbersforaSimpleRenewal Processη(t) 7 1.1.4 Almost Sure Convergence of Some Functionals of CRPs 7 1.2 FirstMomentsoftheProcesses Z(t) andY(t).StrongLaws ofLargeNumbers 10 1.2.1 AsymptoticsforFirst-andSecond-OrderMoments of Z(t)andY(t) 10 1.2.2 StrongLawsofLargeNumbers 13 1.3 CentralLimitTheoremandtheLawoftheIteratedLogarithm 13 1.3.1 Anscombe’sTheorem 13 1.3.2 CentralLimitTheorem 14 1.3.3 LawoftheIteratedLogarithm 16 1.4 Convergence to a Stable Law. Analog of the Law of the IteratedLogarithm 17 1.4.1 ConvergencetoaStableLaw 17 1.4.2 AnalogoftheLawoftheIteratedLogarithm 19 1.5 InvariancePrinciple 21 1.5.1 Introduction 21 1.5.2 Analog of Anscombe’s Theorem in the Case of ConvergencetoaContinuousProcess 22 1.5.3 InvariancePrincipleforCompoundRenewalProcesses 24 vi Contents 1.6 Convergence ofNormalizedCompoundRenewalProcesses toStableProcessesintheCasewhenξ hasInfiniteVariance 28 1.6.1 S-ConvergencetoStableProcesses 28 1.6.2 AbsenceofS-ConvergencewithoutCondition(1.6.5) 32 1.6.3 D-ConvergencetoStableProcesses 33 1.7 Limit Theorems for the First Passage Time of an Arbitrary BoundarybyaCompoundRenewalProcess 38 1.7.1 Introduction 38 1.7.2 CaseofFiniteVariance 39 1.7.3 CaseofInfiniteVariance 44 1.8 MainLimitLawsforMarkovAdditiveProcesses(forSums ofRandomVariablesDefinedonStatesofaMarkovChain) 49 1.8.1 ErgodicTheoremsforHarrisMarkovChains 49 1.8.2 MarkovAdditiveProcess 51 1.8.3 MainLimitLawsforMarkovAdditiveProcesses 53 2 Integro-LocalLimitTheoremsintheNormalDeviationZone 57 2.1 Integro-LocalLimitTheoremsintheCaseofIndependentor LinearlyDependentτandζ 57 2.1.1 Integro-LocalTheoremforRandomWalks 58 2.1.2 Integro-LocalTheoremsforHomogeneousCRPsin theCaseofIndependentorLinearlyDependentτandζ 60 2.2 Refinement of Stone’s Integro-Local Theorem for Random Walks 67 2.3 Integro-Local Theorems for Compound Renewal Processes intheGeneralCase 74 2.4 ExtensionofResultstotheInhomogeneousCase 84 2.5 Integro-LocalTheoremsforMarkovAdditiveProcesses 87 3 LargeDeviationPrinciplesforCompoundRenewalProcesses 90 3.1 Introduction 90 3.2 RelationshipbetweenCompoundRenewalProcessesandthe RenewalMeasure.DeviationFunctionfortheRenewalMeasure 93 3.2.1 RenewalMeasuresandCRPs 93 3.2.2 Asymptotics for the Renewal Measure and the CorrespondingDeviationFunction 95 3.2.3 PreliminaryVersionoftheLocalLDPforCRPs 98 3.3 Deviation Functions for the Renewal Measure and for CompoundRenewalProcesses 99 3.3.1 Properties of the Function D(t,α) and of the DeviationFunctionsforCRPs 99 3.4 LargeDeviationPrinciplesfor Z(T) 105 3.4.1 TheGeneralCase 105 Contents vii 3.4.2 HomogeneousProcessesandProcesseswithStation- aryIncrements 109 (cid:2) (cid:3) 3.4.3 LDPfortheProcess Z(t),γ(t) andItsConsequences 111 3.5 FundamentalFunctionsandTheirProperties.FurtherProper- (cid:2) tiesoftheDeviationFunctionD(α),D(α).OntheCondition λ+ < D(0) 112 3.5.1 FundamentalFunctionsandTheirProperties.Further PropertiesoftheFunctionD(α) 112 3.5.2 PropertiesoftheFunctions μ(α)and μ(α) 124 3.5.3 PropertiesoftheDeviationFunctioninItsGeneral FormandoftheCorrespondingFundamentalFunction 130 3.5.4 Condition λ+ < D(α) and Strong Dependence betweenτandζ intheLargeDeviationZone 135 3.5.5 Examples 137 3.6 On Large Deviation Principles for the ProcessY(t) and for MarkovAdditiveProcesses 141 3.6.1 LDP for the ProcessY(t) on the Narrowing of the (cid:4) (cid:5) Set Y(T) ∈TΔ[α) 142 3.6.2 LDPforY(t)whenτandζ AreIndependent 144 3.6.3 OnLargeDeviationPrinciplesforMarkovAdditive Processes 145 3.7 Rough Asymptotics for the Laplace Transform of the DistributionofaCompoundRenewalProcess 147 4 LargeDeviationPrinciplesforTrajectoriesofCompoundRenewal Processes 154 4.1 ConditionsfortheFulfillmentoftheLDPfortheIncrements ofaProcessandforFinite-DimensionalDistributions 154 4.1.1 LDPforIncrementsofaCRP 154 4.1.2 ProofofLemma4.1.5 161 4.2 First Partial Local Large Deviation Principles for the TrajectoriesofaCompoundRenewalProcess 163 4.2.1 MainAssertionandItsProof 164 4.2.2 ProofsofLemmas4.2.2and4.2.4 170 4.3 SecondPartialLocalLargeDeviationPrinciple 176 4.3.1 MainResults 176 4.3.2 OntheMostProbableTrajectories 179 4.3.3 AuxiliaryAssertions 181 4.3.4 ProofofTheorem4.3.1 183 4.4 CompleteLocalLargeDeviationPrinciple 186 4.5 IntegralLargeDeviationPrincipleforTrajectoriesofaCom- poundRenewalProcess 189 4.5.1 MainResultandItsProof 189 viii Contents 4.5.2 OntheRelaxationoftheConditionsofTheorem4.5.1 196 4.6 LargeDeviationPrinciplesfortheFirstBoundaryCrossing Problem 197 4.6.1 LevelLines 198 4.6.2 Inequalities for the Distribution of the Maximum ValueofaCRP 201 4.6.3 Large Deviation Principles for the First Boundary CrossingProblem 204 4.7 LargeDeviationPrinciplesfortheSecondBoundaryCross- ingProblem 208 4.7.1 MostProbable(Shortest)Trajectories 208 4.7.2 TheSecondBoundaryCrossingProblem 211 4.8 Moderately Large Deviation Principles for Trajectories of CompoundRenewalProcesses 215 4.8.1 MainResults 215 4.8.2 Proofs 218 4.8.3 Rough(Logarithmic)InvariancePrincipleforCRPs intheModeratelyLargeDeviationZone 224 5 Integro-LocalLimitTheoremsundertheCramérMoment Condition 225 5.1 Introduction 225 5.2 MainResults 226 5.2.1 Integro-LocalTheoremfortheProcess Z(t) 226 5.2.2 Integro-LocalTheoremfortheProcessY(t) 231 5.2.3 Integro-Local Theorem for Finite-Dimensional DistributionsoftheProcess Z(t) 233 5.2.4 NormalandModeratelyLargeDeviations 235 5.3 Integro-LocalTheoremsfortheRenewalMeasure 237 5.4 ProofofTheorem5.2.1andItsGeneralization 249 5.4.1 ProofofTheorem5.2.1 249 5.4.2 ExtensionofResultstotheCasewhentheDistribu- tionof(τ,ζ )DependsonaParameter 254 1 1 5.5 ProofsofTheorems5.2.10–5.2.14 256 5.5.1 ProofofTheorem5.2.10 256 5.5.2 Proof of Theorem 5.2.13 on Finite-Dimensional Distributions 262 5.5.3 ProofofTheorem5.2.14 263 5.6 Exact Asymptotics of the Laplace Transform of the Dis- tribution of a Compound Renewal Process and Related Problems 264 5.6.1 MainResult 264 Contents ix 5.6.2 RefinementoftheInequalitiesofTheorem4.6.3for theDistributionof Z(T) 267 5.6.3 ExactAsymptoticsoftheMomentsofaCRP 269 5.7 Integro-LocalTheoremsforMarkovAdditiveProcessesunder theCramérConditions 272 6 ExactAsymptoticsinBoundaryCrossingProblemsforCompound RenewalProcesses 275 6.1 Asymptotics of Distributions of the Maximal Value of a Compound Renewal Process with Linear Drift. First PassageTimeofaHighLevel 275 6.1.1 Preliminaries 275 6.1.2 DistributionoftheMaximalValueofaCRPwithDrift 278 6.1.3 DistributionoftheFirstPassageTimeofaHighLevel 281 6.2 LimitTheoremsundertheCramérConditionfortheCondi- tionalDistributionofJumpswhentheTrajectoryHasaFixed End 287 6.2.1 LimitConditionalDistributionofJumps 287 6.2.2 OntheDistributionoftheVectorαξ 290 6.3 Integro-LocalTheoremsfortheFirstPassageTimeofaHigh LevelbytheTrajectoryofaCompoundRenewalProcess 290 6.4 IntegralTheoremsfortheDistributionof Z(T) =maxt≤T Z(t) 295 6.4.1 TheCasea <0,α >0 295 6.4.2 TheCaseα > a ≥ 0 302 6.4.3 TheCasea >0,α ∼aasT →∞ 304 6.4.4 AsymptoticsoftheProbabilitythattheTrajectoryof aCRPDoesNotCrossaHighLevel xforα = x < a 306 T 6.5 Integro-LocalTheoremsinBoundaryCrossingProblemsfor CompoundRenewalProcesses 308 6.5.1 Integro-Local Theorems for the First Boundary CrossingProblem 308 6.5.2 Integro-Local Theorems for the Ruin Probability Problem 314 6.6 IntegralTheoremsinBoundaryCrossingProblems 315 6.6.1 Integral Theorems in the First Boundary Crossing Problem 315 6.6.2 OntheSecondBoundaryCrossingProblem 317 6.7 ApplicationstotheRuinProbabilityProblemforInsurance Companies 319 7 Extension of the Invariance Principle to the Zones of Moderately LargeandSmallDeviations 325 7.1 StrongApproximationofaCRPbyaWienerProcess 325

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.