ebook img

Compositions of quadratic forms PDF

429 Pages·2000·2.036 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Compositions of quadratic forms

Dedicated to Amanda, Becky and Jacob Table of Contents Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .xi Chapter0 HistoricalBackground . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 Notes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 Part I. Classical Compositions and Quadratic Forms Chapter1 SpacesofSimilarities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 Appendix. Compositionalgebras . . . . . . . . . . . . . . . . . . . . . . . . . . 21 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 Notes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 Chapter2 AmicableSimilarities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46 Notes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51 Chapter3 CliffordAlgebras . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64 Notes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71 Chapter4 C-ModulesandtheDecompositionTheorem . . . . . . . . . . . . . . . . . . 73 Appendix. λ-HermitianformsoverC . . . . . . . . . . . . . . . . . . . . . . . . 81 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83 Notes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89 Chapter5 Small(s,t)-Families . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .101 Notes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .106 viii Chapter6 Involutions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .108 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .116 Notes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .118 Chapter7 Unsplittable(σ,τ)-Modules . . . . . . . . . . . . . . . . . . . . . . . . . . . .119 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .131 Notes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .134 Chapter8 TheSpaceofAllCompositions . . . . . . . . . . . . . . . . . . . . . . . . . .135 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .150 Notes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .157 Chapter9 ThePfisterFactorConjecture . . . . . . . . . . . . . . . . . . . . . . . . . . .160 Appendix. Pfisterformsandfunctionfields . . . . . . . . . . . . . . . . . . . .167 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .170 Notes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .175 Chapter10 CentralSimpleAlgebrasandanExpansionTheorem . . . . . . . . . . . . .176 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .196 Notes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .202 Chapter11 HassePrinciples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .204 Appendix. Hasseprinciplefordivisibilityofforms . . . . . . . . . . . . . . . .218 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .220 Notes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .223 Part II. Compositions of Size [r,s,n] Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .227 Chapter12 [r,s,n]-FormulasandTopology . . . . . . . . . . . . . . . . . . . . . . . . . .231 Appendix. Moreapplicationsoftopologytoalgebra . . . . . . . . . . . . . . .252 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .256 Notes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .264 ix Chapter13 IntegerCompositionFormulas . . . . . . . . . . . . . . . . . . . . . . . . . .268 AppendixA.AnewproofofYuzvinsky’stheorem . . . . . . . . . . . . . . . .286 AppendixB.Monomialcompositions . . . . . . . . . . . . . . . . . . . . . . . .288 AppendixC.Knownupperboundsforr ∗s . . . . . . . . . . . . . . . . . . . .291 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .294 Notes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .297 Chapter14 CompositionsoverGeneralFields . . . . . . . . . . . . . . . . . . . . . . . . .299 Appendix. Compositionsofquadraticformsα,β,γ . . . . . . . . . . . . . . .317 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .321 Notes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .327 Chapter15 HopfConstructionsandHiddenFormulas . . . . . . . . . . . . . . . . . . . .329 Appendix. Polynomialmapsbetweenspheres . . . . . . . . . . . . . . . . . . .348 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .353 Notes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .361 Chapter16 RelatedTopics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .363 SectionA.Higherdegreeformspermittingcomposition . . . . . . . . . . . . . .363 SectionB.Vectorproductsandcompositionalgebras . . . . . . . . . . . . . . .368 SectionC.Compositionsoverringsandoverfieldsofcharacteristic2 . . . . . .370 D.Linearspacesofmatricesofconstantrank . . . . . . . . . . . . . . . . . . . .372 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .375 Notes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .380 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .381 ListofSymbols . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .407 Index . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .413 Introduction This book addresses basic questions about compositions of quadratic forms in the sense of Hurwitz and Radon. The initial question is: For what dimensions can they exist? Subsequentquestionsinvolveclassificationandanalysisofthequadraticforms whichcanoccurinacomposition. This topic originated with the “1, 2, 4, 8 Theorem” concerning formulas for a product of two sums of squares. That theorem, proved by Adolf Hurwitz in 1898, wasgeneralizedinvariouswaysduringthefolowingcentury,leadingtothetheories discussed here. This area is worth studying because it is so centrally located in mathematics: thesecompositionshavecloseconnectionswithmathematicalhistory, algebra,combinatorics,geometry,andtopology. Compositions have deep historical roots: the 1, 2, 4, 8 Theorem settled a long standing question about the existence of “n-square identities” and exhibited some of the power of linear algebra. Compositions are also entwined with the nineteenth centurydevelopmentofquaternions,octonionsandCliffordalgebras. Another attraction of this subject is its fascinating relationship with Clifford al- gebras and the algebraic theory of quadratic forms. A general composition formula involvesarbitraryquadraticformsoverafield,notjusttheclassicalsumsofsquares. SuchcompositionscanbereformulatedintermsofCliffordalgebrasandtheirinvo- lutions. Thereisalsoacloseconnectionbetweentheformsinvolvedincompositions andthemultiplicativequadraticformsintroducedbyPfisterinthe1960s. Alltheknownconstructionsofcompositionformulasforsumsofsquarescanbe achievedusingintegercoefficients. Acompositionformulawithintegercoefficients canberecastasacombinatorialobject: aspecialsortofmatrixofsymbolsandsigns. These“intercalate”matriceshavebeenstudiedintensively,leadingtoaclassification oftheintegercompositionswhichinvolveatmost16squares. Finally this topic is connected with certain deep questions in geometry. For in- stance,compositionformulasprovideexamplesofvectorbundlesonprojectivespaces, of independent vector fields on spheres, of immersions of projective spaces into eu- clideanspaces, andofHopfmapsbetweeneuclideanspheres. Thetopologicaltools developedtoanalyzethesetopicsalsoyieldresultsaboutrealcompositions. Let us now describe the original question with more precision: A composition formulaofsize[r,s,n]isasumofsquaresformulaofthetype (x2+x2+···+x2)·(y2+y2+···+y2)=z2+z2+···+z2 1 2 r 1 2 s 1 2 n

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.