ebook img

Compositional study of asteroids in the Erigone collisional family using visible spectroscopy at the 10.4 m GTC PDF

5.5 MB·
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Compositional study of asteroids in the Erigone collisional family using visible spectroscopy at the 10.4 m GTC

Astronomy&Astrophysicsmanuscriptno.Morate_Erigones_LatestVersion (cid:13)cESO2017 January16,2017 Compositional study of asteroids in the Erigone collisional family using visible spectroscopy at the 10.4m GTC DavidMorate1,2,JuliadeLeón1,2,MárioDePrá3,JavierLicandro1,2,AntonioCabrera-Lavers1,4,Humberto Campins5,NoemíPinilla-Alonso6,andVíctorAlí-Lagoa7 1 InstitutodeAstrofísicadeCanarias(IAC),C/VíaLácteas/n,38205LaLaguna,Tenerife,Spain 2 DepartamentodeAstrofísica,UniversidaddeLaLaguna,38205LaLaguna,Tenerife,Spain 3 ObservatórioNacional,CoordenaçãodeAstronomiaeAstrofísica,20921-400RiodeJaneiro,Brazil 4 GTCProjectOffice,38205LaLaguna,Tenerife,Spain 5 PhysicsDepartment,UniversityofCentralFlorida,P.O.Box162385,Orlando,FL32816-2385,USA 7 6 DepartmentofEarthandPlanetarySciences,UniversityofTennessee,Knoxville,37996TN,USA 1 7 LaboratoireLagrange,OCA,Boulevarddel’Observatoire,B.P.422906304NiceCedex04-France 0 2 January16,2017 n a ABSTRACT J Twoprimitivenear-Earthasteroids,(101955)Bennuand(162173)Ryugu,willbevisitedbyaspacecraftwiththeaimofreturning 3 samples back to Earth. Since these objects are believed to originate in the inner main belt primitive collisional families (Erigone, 1 Polana,ClarissaandSulamitis)orinthebackgroundofasteroidsoutsidethesefamilies,thecharacterizationoftheseprimitivepop- ulations will enhance the scientific return of the missions. The main goal of this work is to shed light on the composition of the ] P Erigonecollisionalfamilybymeansofvisiblespectroscopy.Asteroid(163)Erigonehasbeenclassifiedasaprimitiveobject(Bus E 1999;Bus&Binzel2002),andweexpectthemembersofthisfamilytobeconsistentwiththespectraltypeoftheparentbody.We haveobtainedvisiblespectra(0.5-0.9µm)for101membersoftheErigonefamily,usingtheOSIRISinstrumentatthe10.4mGran . h TelescopioCanarias.Wefoundthat87%oftheobjectshavetypicallyprimitivevisiblespectraconsistentwiththatof(163)Erigone. p Inaddition,wefoundthatasignificantfractionoftheseobjects(∼50%)presentevidenceofaqueousalteration. - o Keywords. minorplanets,asteroids:general-methods:dataanalysis-techniques:spectroscopic r t s a 1. Introduction compositions, will shed light on the evolutionary history of the [ SolarSystem. 1Primitive asteroids are considered to be composed of the most Asteroidcollisionalfamiliesaregroupsofasteroidssharing vpristinematerialsintheSolarSystem,beingremnantsofthepro- very similar orbital properties (Hirayama 1918), thought to be 1cesses which followed the condensation of the proto-planetary thedirectresultofenergeticcollisionalevents.Spectroscopicob- 6nebulaandtheformationoftheplanets.Thematerialsonthese servationsprovidedthefirstconfirmationofthecollisionalorigin 7objects have been altered over time due to different processes, ofafamily:theVestafamily(Binzel&Xu1993).Thespectro- 3 0suchasspaceweatheringandaqueousalteration(Fornasieretal. scopicstudyofcollisionalfamilieshavesteadilyincreasedsince .2014).Aqueousalterationactsmainlyonprimitiveasteroids(C, then, focusing on the characterization of their mineralogy. Ad- 1B,andlowalbedoX-types,accordingtotheDeMeoetal.(2009) ditionally, considering that near-Earth asteroids (NEAs) come 0classification scheme), producing a low-temperature (< 320K) primarily from the main asteroid belt (Bottke et al. 2002), col- 7 chemicalalterationofthematerialsduetothepresenceofliquid lisional families are good sources of NEAs, as they generate 1 water.Thiswateractsasasolventandgenerateshydratedmateri- plenty of small fragments during their formation. Families lo- : valslikephyllosilicates,sulfates,oxides,carbonates,andhydrox- cated close to particular resonances in the belt can easily send Xiides.Thepresenceofhydratedmaterialsthusimpliesthatliquid thesefragmentstothenear-Earthspace.Inthissense,theinner water was present in the primordial asteroids, produced by the asteroidbelt(theregionlocatedbetweentheν resonance,near armeltingofwatericebyaheatingsource(Fornasieretal.2014). 2.15AU,andthe3:1mean-motionresonancew6ithJupiter,at2.5 Themostunambiguousindicatorofhydrationisthe3µmhydra- AU) is considered as a primary source of near Earth asteroids tion band observed in infrared photometry and spectroscopy of (Bottkeetal.2002). manyprimitiveasteroids.Thisfeatureiscorrelatedwiththe0.7 NASA OSIRIS-REx (Lauretta et al. 2010) and JAXA1 µmFe2+ →Fe+3 oxidizedironabsorptionbandobservedinthe Hayabusa2(Tsudaetal.2013)sample-returnmissionshavetar- visiblespectraoftheseasteroids(Vilas1994;Howelletal.2011; geted two near Earth asteroids: (101955) Bennu and (162173) Rivkin2012). Ryugu, respectively. These are primitive asteroids that are be- Apartfromthisaqueousalteration,primitiveasteroidshave lieved to originate in the inner belt, where five distinct sources undergone minimal geological or thermal evolution, experienc- havebeenidentified:fourprimitivecollisionalfamilies(Polana, ing,onthecontrary,anintensecollisionalevolutionthataffected Erigone,SulamitisandClarissa)andapopulationoflow-albedo their shape, size, and surface composition. Therefore, studying the products of those collisional events and their mineralogical 1 JapanAerospaceExplorationAgency Articlenumber,page1of19 A&Aproofs:manuscriptno.Morate_Erigones_LatestVersion andlow-inclinationbackgroundasteroids(Campinsetal.2010, 0.25 2013;Bottkeetal.2015).Identifyingandcharacterizingthepop- ulations from which these two NEAs might originate will en- hancethesciencereturnofbothmissions. 0.2 Withthismainobjectiveinmindweinitiatedin2010aspec- troscopic survey in the visible and the near-infrared to charac- y terizetheprimitivecollisionalfamiliesintheinnerbeltandthe cit low-albedo background population (PRIMitive Asteroid Spec- ntri0.15 troscopic Survey, PRIMASS). We started with the largest one, ce c the Polana family (Pinilla-Alonso et al. 2015; de León et al. E 2015), using, among other, visible spectra obtained with the 0.1 10.4mGranTelescopioCanarias,locatedattheElRoquedelos MuchachosObservatory,intheislandofLaPalma(Spain).We foundthat,despitethedynamicalandcollisionalcomplexityof thePolanafamily(Walshetal.2013;Milanietal.2014;Dykhuis 0.05 &Greenberg2015),thereisaspectralhomogeneitybothinthe 6 visibleandthenear-infraredwavelengths,alltheasteroidsshow- ingacontinuuminspectralslopesfrombluetomoderatelyred ) 5.5 s typicalofB-andC-typeprimitiveasteroids. ee 5 To continue with the PRIMASS survey, we have observed egr 4.5 and characterized the Erigone family, the second largest one d of the four primitive collisional families in the inner belt. We n ( 4 o haveperformedouranalysisusingdataobtainedwiththe10.4m ati 3.5 Gran Telescopio Canarias during the semester 2014B (Septem- n 3 ber 2014 - February 2015). In Section 2 we describe the ob- cli n 2.5 servations and the data reduction. In Section 3 we present the I 2 analysis performed on the data, including taxonomical classifi- cation, computation of spectral slopes and analysis of aqueous 1.5 alteration. In Section 4 we discuss the obtained results, and in 1 2.2 2.25 2.3 2.35 2.4 2.45 2.5 Section5wesummarizetheconclusions. Semimajor axis (A.U.) 2. Observationsanddatareduction Fig. 1. Proper semi major axis (a) versus proper eccentricity (e) and properinclination(i)fortheprimitiveasteroidfamiliesintheinnermain Thesampleofasteroidsweobservedinthisstudyhasbeense- belt.Erigonefamilyisdepictedinblack.ThePolana(Nysa-Polanacom- lected using the Minor Planet Physical Properties Catalogue2 plexinthisplot),Sulamitis,andClarissafamiliesaredepictedingreen, (MP3C),whichacknowledgesasadatasourcetheNASAPlan- gray,andcyan,respectively. etary Data System (PDS). Orbital data regarding the asteroid families are extracted from a dataset containing asteroid dy- namical families including both analytic and synthetic proper on different nights (see details in the next section). Therefore, elements. These families were computed by David Nesvorny from thepreviouslist of asteroids, weselected those having an (Nesvorny2012)usinghiscodebasedontheHierarchicalClus- apparent visual magnitude in the range 18 < m < 21 to get a V teringMethod(HCM),asdescribedinZappalaetal.(1990)and goodcompromisebetweenthenumberofasteroidsobservedand Zappala & Cellino (1994). The MP3C catalogue provides also the signal-to-noise of the spectra. This means that for some of information on the absolute magnitude H, the diameter D, and thenightstherewerenovisibleasteroidsfulfillingthesecriteria. thegeometricalbedopV.Inthecaseofthediametersandalbedos In those cases (16 in total), we first tried to find objects having weusedthevaluesprovidedbyWISE(Wide-fieldInfraredSur- SDSS color-based taxonomical classification available (prefer- veyExplorer,Masieroetal.2011).Familymembershipisbased entially C-types). When this information was not available, we onvaluesofthesyntheticproperelements,i.e.,semimajoraxis selected objects having p > 0.1. Our last option was to select V (a),eccentricity(e)andinclination(i),andalsoontheabsolute objects with no information on their albedo. We describe this magnitude as a function of semi major axis (a,H). According smallsub-sampleindetailinSection3. totheseparameters,theErigonefamilycontainsatotalof1785 asteroids. The selection criterion was quite simple. The Erigone col- 2.1. Observations lisional family is a primitive one according to the information we currently have: from the list of 1785 members of the fam- We obtained low-intermediate resolution visible spectroscopy ily, 1015 have no albedo information, but from the remaining for a total of 101 asteroids using the Optical System for Imag- 770 objects, 692 have geometric albedo values p < 0.1. Be- ingandLowResolutionIntegratedSpectroscopy(OSIRIS)cam- V sides, 156 objects have SDSS color-based taxonomies, the ma- era spectrograph (Cepa et al. 2000; Cepa 2010) at the 10.4m jorityofthembelongingtoprimitiveclasses(91C-types,10B- GranTelescopioCanarias(GTC),locatedattheElRoquedelos types,7X-types,39S-types,5L-types,2K-types,1V-type,and Muchachos Observatory (ORM) in La Palma, Canary Islands, 1 A-type). Therefore, we selected those asteroids with geomet- Spain.TheOSIRISinstrumentconsistsofamosaicoftwoMar- ric albedo p < 0.1. Observations were done in service mode coni CCD detectors, each with 2048 x 4096 pixels and a total V unvignetted field of view of 7.8 x 7.8 arcmin. The single pixel 2 http://mp3c.oca.eu/MP3C/ physical size is 15 µm, giving a plate scale of 0.127 "/pix. To Articlenumber,page2of19 DavidMorateetal.:VisiblespectroscopyofErigonecollisionalfamily increasethesignaltonoiseforourobservationsweselectedthe Table1.Equatorialcoordinatesofthesolaranaloguestarsusedtoob- tainthereflectancespectraoftheobservedasteroids. 2x2binningmodewithareadoutspeedof200kHz(whichhas a gain of 0.95 e-/ADU and a readout noise of 4.5 e-), as corre- spondswiththestandardoperationmodeoftheinstrument. ID Star α δ 1 SA93-101 01:53:18.0 +00:22:25 All the spectra were obtained using the OSIRIS R300R grism,whichproducesadispersionof7.74Å/pixfora0.6"slit 2 SA98-978 06:51:34.0 -00:11:28 3 SA102-1081 10:57:04.4 -00:13:10 (intheworstcasescenario,aseeingof3.0"wouldtranslateinto 4 SA110-361 18:42:45.0 +00:08:04 aresolutionof38.7Å/pix),withaspectralcoveragefrom4800 5 SA112-1333 20:43:11.8 +00:26:15 to 10000 Å. The R300R grism is used in combination with a 6 SA115-271 23:42:41.8 +00:45:10 second order spectral filter. However, there is still a slight con- 7 SA107-998 15:38:16.4 +00:15:23 tamination in the spectrum, with a distinguishable contribution forwavelengthsat4800-4900Åand9600-9800Å.Then,tobe conservative, we do not consider here data beyond 9000 Å. A subtracted,andaonedimensionalspectrumwasextractedusing 5.0"-widthslitwasusedtoaccountforpossiblevariableseeing anextractionaperturethatvarieddependingontheseeingofthe conditions and it was oriented to the parallactic angle to mini- corresponding night. After the extraction, the one dimensional mize loses due to atmospheric dispersion. Series of three spec- spectrawerewavelengthcalibratedusingXe+Ne+HgArlamps. tra (whenever possible) were taken for all the targets, with ex- Asafinalstep,thethreespectraofthesameobject,whenavail- posure times ranging from 150-600 s, depending on the target able,wereaveragedtoobtainonefinalspectrumoftheasteroid. brightness.ObservationaldetailsarelistedinTable3.Informa- Inordertocorrectfortelluricabsorptionsandtoobtainrel- tionincludesasteroidnumber,dateofobservation,startingUT, ative reflectance spectra, at least one solar analogue star from airmass, exposure time, solar analogue stars and seeing at the theLandoltcatalogue(Landolt1992)wasobservedeachnight. moment of the observations. Consecutive spectra were shifted Whenpossible,morethanonesolaranaloguestarwasobserved in the slit direction by 10 arcsecs, in order to improve the sky inordertoimprovethequalityofthefinalspectraandtomini- subtractionandthefringingcorrection. mizepotentialvariationsinspectralslopeintroducedbytheuse Observations were done in service mode (within GTC pro- of one single star. These stars were observed using the same gram GTC39-14B) on different nights along September3 2014- spectral configuration as that for the asteroids, and at a simi- February 2015. Night conditionswere rather variable, covering larairmass.Thelistofthesolaranaloguesusedinthisstudyis a wide range of different weather conditions. This was due to showninTable1. the fact that the program was classified as a "filler" (C-band) The MATLAB routines in our pipeline were used to align programwithintheGTCnightlyoperationschedule.Theaimof thespectraoftheobjectsandthecorrespondingsolaranalogue, these type of programs is to obtain high signal to noise spectra usingthetheoreticalwavelengthpositionsofthetelluriclinesat fortargetsthatarerelativelybrightfora10m-classtelescopeas 6867.19 and 7593.70 Å. Once aligned, the spectrum of the ob- GTC in non-optimal weather conditions, that would include a jectwasdividedbythatofthesolaranalogue,andtheresultwas highseeingvalue(largerthan1.5arcsec),brightmoon,orsome normalizedtounityat0.55µm.Whenmorethanonesolarana- cirruscoverage.Becauseofthis,spectraqualitymightvaryfrom loguewasobserved,wedividedthespectrumoftheasteroidby onenighttoanother(seeTable3,lastcolumn).Sincetheweather the spectra of the stars and checked against any possible varia- conditions (i.e. clouds, sky brightness, etc.) are the main con- tions in spectral slopes, which were of the order of 0.6%/1000 straintalongtheobservation,thisvariationisunrelatedtothetar- Å. A variation smaller than 1%/1000 Å is typically considered getbrightness.Forcompleteness,wehaveincludedinthisstudy asagoodvalue. thevisiblespectraofasteroids(163)Erigone,theparentbodyof Oncethefinalspectrumforeachobjectwasobtained,abin- thefamilyand(571)Dulcinea,thesecondlargestasteroidinthe ning was applied to each spectra, taking intervals of 11 points family, both from the SMASS II catalog4. There were no more asthebinsize.Then,thereflectancevaluecorrespondingtothe asteroidsfromtheErigonefamilywithpublishedvisiblespectra. centralwavelengthofthebinsizewassubstitutedwiththeme- All in all, our sample of asteroids from the Erigone collisional dian reflectance value, in order to avoid spectral disturbances, familyincludesatotalof103objects. andthusmakingtheresultingspectrummorerobust.Inorderto choose the binning size, we selected the worst spectrum in our sample and applied different binning sizes, until its quality im- 2.2. Datareduction proved.Sincethefinestspectralfeaturewewanttomeasure,the A reduction pipeline for asteroid spectroscopic data obtained 0.7µmband,hasanapproximatewidthof2000Å,weconsider withtheGTCwasdevelopedinordertooptimizethereduction that the selected binning is sufficient to improve the quality of process.ThispipelinecombinesstandardIRAF5tasksandsome the spectra, and to not affect the obtained results. The spectral MATLABfunctions. range extends from 0.5 to 0.9 µm, with a step of 0.0055 µm. UsingtheIRAFtasksincludedinourpipeline,imageswere SpectraareshowninFig.B.1. initially bias and flat-field corrected, using lamp flats from the GTCInstrumentCalibrationModule.Skybackgroundwasthen 3. Analysisandresults 3 SomeoftheasteroidswereobservedduringAugust2014uponre- Aftercomputingthefinalspectra,ataxonomicclassificationwas quest from the GTC operations team to fill observational gaps during particularnights. made using M4AST6, which is an online tool for modelling of 4 Availableathttp://smass.mit.edu/catalog.php asteroid spectra (Popescu et al. 2012). The method used by the 5 IRAFisdistributedbytheNationalOpticalAstronomyObservato- M4AST tool to classify asteroid spectra is the following: first, ries,whichareoperatedbytheAssociationofUniversitiesforResearch the spectrum is fitted with a polynomial curve, and then this inAstronomy,Inc.,undercooperativeagreementwiththeNationalSci- enceFoundation. 6 http://m4ast.imcce.fr/ Articlenumber,page3of19 A&Aproofs:manuscriptno.Morate_Erigones_LatestVersion Table2.Asteroidsinoursampleforwhichthereisnoinformationon C−type (43%) Others (13%) their visible geometric albedo or the albedo value is larger than 10% (p >0.1). V T−type (7%) Asteroid p SDSSClass. M4ASTClass. v 38661 - S Sr B−type (11%) 39895 - S S 56349 - C B 186446 - C Ch 18759 0.303 - Sr 24037 0.129 - L X−type (27%) 132383 0.356 - L 38106 - - L 50068 - - L C−type (58%) Others (30%) 66403 - - Ch 69706 - - S 70511 - - V 76922 - - Xk 85727 - - S 107070 - - L 166264 - - Xk B−type (7%) 186446 - - Ch X−type (5%) in Table 2. Besides, the three asteroids having p > 0.1 corre- V Fig.2.DistributionofthetaxonomicalclassesfortheErigonefamily. spond to non-primitive classes. In the case of the remaining 10 Toppanelshowsthedistributionforthesampleof103asteroidsstudied asteroidswithnoalbedoinformationwefoundamixtureoftax- inthispaper.Bottompanelshowsthedistributionforthecolor-based onomies,having2C-types,2X-types,2S-types,3L-types,and taxonomyfromtheSDSSdata(theXclassintheSDSSclassification 1V-type.Fromthetotalof86asteroidshavingp <0.1,thereis includes the T-type from the Bus taxonomy). The "Others" class in- V cludesallnon-primitivetaxonomies(S-types,V-types,andL-types). onlyonesingleobjectwithanon-primitiveclassification,being anL-type. To perform one final comparison with the taxonomical dis- curveiscomparedtoeachoftheclassesdefinedbytheDeMeo tributionwefoundfromourvisiblespectra,wesearchedforall et al. (2009) taxonomy at the corresponding wavelengths. The theasteroidsintheErigonefamilyhavingSDSScolor-basedtax- tool then selects the taxonomical class producing the smallest onomy. A total of 156 objects belonging to the Erigone family standarddeviation. wereclassifiedaccordingto(DeMeo&Carry2013).Inthelower panelofFig.2weshowtheirtaxonomicdistribution.Thereisa Wearedealingwithspectrainthevisiblewavelengthrange. goodagreementbetweentheproportionofCandB-typesfrom Thus,weareusingtheBus&Binzel(2002)taxonomy,inwhich oursampleandtheonefromtheSDSStaxonomy,beingthepro- most of the classes overlap the DeMeo et al. (2009) ones. We portionofX-typeasteroidssignificantlylargerinourcase.The havecheckedindividuallythosecasesinwhichthetaxonomical difference between both non-primitive distributions is probably classeswereexclusivetotheDeMeoetal.(2009)taxonomyand duetotheselectioncriterion(p <0.1). visuallyclassifiedthemaccordingtoBus&Binzel(2002). V Fig.3showsthedistributioninthe(a,H)spaceofthe1785 To obtain robust results, both original and binned spectra asteroids that have been identified as members of the Erigone wereclassifiedusingtheM4ASTtool.Aχ2 method(Bevington collisional family (grey circles). As described by Vokrouhlický & Robinson 1992) was used to test how well the spectra fitted et al. (2006), the family shows signs of having experienced tothetemplates.Thechosenresultwastheonecorrespondingto dynamical spreading via the Yarkovsky thermal forces. Solid thesmalleststandarddeviation.Wheneveraspectrumwasvery differentfromthebest-fittingtemplate,orwhenthestandardde- curvesinFig.3definetheboundariesofthefamily,alsoknown asthe“Yarkovskycone",computedusingthefollowingexpres- viationswereverysimilarfortwoormoretaxonomicalclasses, sion: we simplified the method: the binned spectrum was fitted to a third-orderpolynomialandthentheprocedurewasrepeated.The 0.2H =log (∆a/C), taxonomicalclassificationobtainedforeachasteroidisshownin 10 thelastcolumnofTable4. where∆a=a−a ,witha definedasthecenterofthefamily.In c c Theclassificationyieldedatotalof44C-typeasteroids(in- practice,a isoftencloseto,orthesameas,thesemimajoraxis c cluding the subclasses Cb, Cg, Ch, and Cgh), 28 X-type aster- of the largest member of the family, in this case asteroid (163) oids(andsubclassesXcandXk),11B-types,7T-types,and13 Erigone (Vokrouhlický et al. 2006; Bottke et al. 2015). Bottke objects with non-primitive classifications: 6 S-types (and sub- etal.(2015)showedthat,fortheErigonefamily,C =1.9x10−5. classes), 1 V-type, and 6 L-types. These results are illustrated ThisYarkovskyconeisbasicallyanenvelopearoundthecenter with a pie chart in Fig. 2 (upper panel). As expected from our of the family, indicating the furthest that a family member can selection criterion (objects with p < 0.1), the majority of the driftasafunctionofitssize.Objectsoutsidethisconearelikely V asteroids belong to primitive taxonomical classes (C-, B-, X-, familyinterlopers.Fig.3showstheposition,withrespectofthis and T-). As mentioned in Section 2, and due to observational cone, of the asteroids studied in this work. Different colors are constraints, 16 asteroids from the 101 observed did not fulfill associated to different spectral classes, as it is indicated in the the selection criteria. Their taxonomical classification is shown legendofthefigure.Itisinterestingtonotethatmostoftheas- Articlenumber,page4of19 DavidMorateetal.:VisiblespectroscopyofErigonecollisionalfamily ablenumberofmainbeltprimitiveasteroidspresentanabsorp- 30 tion feature around 0.7 µm, attributed to charge transfer transi- Erigones tionsinoxidizediron(Vilas&Gaffey1989;Vilas1994;Barucci 25 Polanas et al. 1998), which is indicative of, or associated with, aque- s ous alteration in the surface of these objects (i.e. presence of d steroi20 hEyridgroanteed, tmheinepraarlesn).t Fboordnyasoiefrtheet afla.m(2il0y14st)udshieodweind tthhiastw(1o6r3k), er of a15 porfe2s.e2n±tst0h.1is%pawrtiitchulraerspaebcstortopttihoencfeoanttuinreuautm0..7Toµmse,awrcithhfaordespaitdh b absorptionfeatureamongourErigonefamilymembers’spectra m Nu10 wefollowtheproceduredescribedinCarvanoetal.(2003)with someminoradjustments.Forthoseobjectsshowingthisfeature wecharacterizeitscentralwavelengthpositionanddepth. 5 The first step was to compute the continuum of the absorp- tion band by fitting a straight line tangent to the spectra at two 0 positions,0.54-0.56µmand0.86-0.88µm,whicharethelimits -5 -4 -3 -2 -1 0 1 2 3 4 5 6 7 8 9 Spectral slope S (%/0.1µm) ofthe0.7µmabsorptionband(greenlineinthetoppanelofFig. 5).Wetestedslightlydifferentrangestocomputethecontinuum, Fig.4.Histogramshowingthedistributionforthevaluesofthespectral findingnosignificantchangesinourresults.Then,wefittedthe slopefortheprimitiveasteroidsintheErigonefamily(red).Thedistri- spectruminthisintervalusingaforth-orderspline(redcurvein butionoftheslopesoftheasteroidsofthePolanafamilyfromdeLeón toppanelofFig.5). etal.(2015)isshowninblueasacomparison. Thefinalstepwastoremovethecontinuumbydividingthe spline fit by the straight line we previously obtained (bottom panel of Fig. 5). In order to compute the depth and the central teroidshavingnon-primitivetaxonomiesfalloutsidethefamily wavelengthpositionoftheabsorptionbandandtheircorrespond- boundaries,confirmingtheymostlikelyareinterlopers. ing errors we run a Monte Carlo model with 1000 iterations, In the following sections we will perform a more detailed randomly removing 10 points from the spectrum in the range analysis of the asteroids of the Erigone family with a primitive from0.54to0.88µmateachiteration,thenrepeatingtheabove taxonomical classification, i.e., C-, X-, B-, and T-types. A total describedprocedure.Thebanddepthiscomputedasthediffer- of90objectshavebeenanalyzed. ence,in%,betweenareflectancevalueof1andthereflectance value corresponding to the central wavelength position. The fi- 3.1. Spectralslopes nal values for the band depth and central wavelength are com- putedasthemeanvaluesobtainedforthefullMonteCarlorun, Giventhatprimitiveasteroidshavefeatureless,linearspectra,we andtheerrorsarethecorresponding1σstandarddeviations.The startedbycomputingthespectralslopeS(cid:48),asdefinedby(Luu& criterion to decide whether an object showed an aqueous alter- Jewitt1990),between0.55and0.90µm: ationbandwastoruleoutthoseobjectspresentingbandswitha (cid:32)dS/dλ(cid:33) depth smaller than 1%, or relative errors in the computation of S(cid:48) = , thedepthlargerthan15%.Thedetectionthresholdof1%corre- S 0.55 spondtothepeak-to-peakscatterinourspectra,whichseemsto wheredS/dλistherateofchangeofthereflectivityintheafore- beabetterindicatorofthespectrumqualitythanthecalculated mentionedwavelengthrange,andS isthereflectivityat0.55 signaltonoiseratio. 0.55 microns. To compute it, a linear least-squares fit between 0.55 We have to note that there are some cases in which the de- and0.90µmhasbeenappliedtoeveryprimitiveasteroidspectra. tected bands have higher than expected depths. In those cases Wenormalize7 theslopeat0.55µm.S(cid:48) ismeasuredinunitsof (in particular, that of asteroid 210564), large depth values arise %/1000Å.Theresultingvaluesforthecomputedspectralslopes from the fact that the absorption band is quite broad, and the areshowninTable5.Theslopeerrorstakeintoaccountboththe limitingregionsarenarrowandnotperfectlydefined.Inthespe- 1σ uncertainty of the linear fit and the variation of 0.6%/1000 cificcaseofasteroid210564,ifwechangethecontinuum-fitting Å, attributable to the use of different solar analogue stars dur- upper limits, the band depth might vary from ∼ 9% to ∼ 5%. This is due to the fact that when moving the upper limit be- ing the night (see Section 2.2 for more details). Fig. 4 shows low0.88microns,wemightfallalreadyinsidetheband,produc- thedistributionofthecomputedslopesforthe90primitiveob- ingheavybanddepthshiftswithsmallerrorbars.Thesespecial jects of the Erigone collisional family (red). As a comparison cases might reveal the limitations of our data (if we had infor- weshowthedistributionofthevisiblespectraslopesoftheas- mationover0.9µm,thebandlimitswouldbeclearer). teroids of the Polana family (blue) from de León et al. (2015), In Table 5, we indicate for each asteroid its taxonomical which are compatible with a B-type parent. The two distribu- tionsaresignificantlydifferent,withtheasteroidsoftheErigone classification, if it has or not an absorption band at 0.7 µm (YES/NO),andthecenteranddepthoftheband,whenpresent. familyshowing,ingeneral,redderspectralslopes. Wefoundthat52ofthe90primitiveasteroidsstudiedpresentan absorptionbandat0.7µm,andthatthisbandispresentregard- 3.2. Aqueousalteration less the specific primitive spectral class. Fig. 6 shows the pro- portion of asteroids showing hydration band for each primitive Severalstudies(Vilas1994;Fornasieretal.1999;Carvanoetal. class.InthecaseofC-typeasteroids,almostallofthempresent 2003;Rivkin2012;Fornasieretal.2014)showthataconsider- thehydrationfeature(∼ 88%).Thisproportionisprogressively 7 ThisisthecentralwavelengthoftheJohnsonV filter,whichisusu- smaller for B-types (∼ 36%), X-types (∼ 28.5%), and T-types allyusedasnormalizationreference. (∼ 14%). This decreasing trend in our results is in agreement Articlenumber,page5of19 A&Aproofs:manuscriptno.Morate_Erigones_LatestVersion 19 18 17 e16 d u t ni15 g a m 14 e t olu13 ALL Erigones bs X−type A 12 C−type B−type 11 T−type 10 L−type Others 9 2.3 2.32 2.34 2.36 2.38 2.4 2.42 Semimajor axis (A.U.) Fig.3.Absolutemagnitude(H)oftheasteroidsfromtheErigonefamilystudiedinthisworkasafunctionoftheirpropersemimajoraxis.The Erigonefamily(atotalof1785objects)isshowningrey.Thecoloredcirclescorrespondtothedifferenttaxonomicalclassesfoundforoursample of103members:C-types(red),X-types(black),B-types(green),T-types(yellow),andtherestofnon-primitiveclasses(S-types,L-types,and V-types,inblue).Thesolidlinesrepresenttheboundariesofthefamily(socalled"Yarkovskycone").TheobjecthavingthesmallestvalueofH andlocatedatthebottomofthisconeistheparentbodyofthefamily,asteroid(163)Erigone. withpreviousstudiesoftherelativeincidenceofthisfeaturein 3.3. Comparisonwithspectraof(101955)Bennuand asteroids distributed through the main belt. Vilas (1994) found (162173)Ryugu anincidenceof47.7%inC-typeasteroidsand33%inB-types, whileFornasieretal.(2014)foundanincidenceof50.7%inC- As we described in Section 1, the aim of the characteriza- typesanda9.8%inB-types.TheproportionofC-typeasteroids tion of the Erigone primitive family is that, together with the showingthe0.7µmabsorptionbandissignificantlylargerinthe Polana,ClarissaandSulamitisfamilies,andthelow-albedoand caseoftheErigonefamily,withabout87%oftheasteroids. low-inclination background asteroids, they are the most likely sources of the two NEAs that are the targets of OSIRIS-REx and Hayabusa 2 sample-return missions: (101955) Bennu and The presence of a primitive collisional family, with all the (162173)Ryugu.Spectroscopicandphotometricobservationsof observedobjectslocatedbetween2.3and2.4AU,andwiththe theseasteroidssuggestthattheyarecomposedofprimitivemate- majority of its members showing the 0.7 µm hydration band is rials,pointingtoanoriginintheaforementionedpopulations,re- ingoodagreementwiththeresultspresentedbyFornasieretal. inforcedbytheresultsofdynamicalsimulations(Campinsetal. (2014), where it is suggested that the aqueous alteration pro- 2010,2013;Bottkeetal.2015). cesses dominate in primitive asteroids located between 2.3 and Spectral comparison might shed light upon the origins of 3.1 AU. Moreover, it is stated that the proportion of hydrated both asteroids and so, we have compared the available visible primitive objects in the region where the Erigone family is lo- spectra of asteroids (101955) Bennu and (162173) Ryugu with cated is 64%, in very good agreement with the proportion of thedataobtainedinthiswork. hydratedobjectswehavefoundinoursample,thisis,57.7%(52 Inthecaseof(162173)Ryugu,thereareseveralreferencesin outof90). theliteratureshowingvisiblespectraofthissmall(∼800m),low albedo (p = 0.07) near-Earth asteroid. A first spectrum from V Binzel et al. (2001) shows an ultraviolet drop-off in reflectance We found no significant correlations between the band short-wards 0.65 µm and provides a classification of Cg-type. depthsorthebandcentersandthetaxonomicalclass,theaster- Two other visible spectra were presented in Vilas (2008), ob- oidsorbitalparameters,thealbedo,orthesizeoftheobjects.A tainedonJulyandSeptember2007.Thesetwospectraweredif- similarlackofcorrelationsisfoundbyCarvanoetal.(2003)and ferentfromeachother,andalsodifferentfromtheonebyBinzel Fornasier et al. (2014) in their respective studies for asteroids etal.(2001),showingnoultravioletdrop-off.Thespectrumob- through the whole main belt. Additionally, the mean values we tained in July showed an absorption band at 0.7 µm and a red foundforboththebanddepth,2.9±1.5%,andthebandcenter spectralslope,whiletheoneobtainedinSeptember,withamuch position,7053±160Å,areinexcellentagreementwiththoseob- higher signal-to-noise, presented a neutral slope and showed a tainedbyFornasieretal.(2014):2.8±1.2%forthebanddepth marginal,veryshallowabsorptioncenterednear0.6µmAccord- and6914±148Åforthebandcenter.Theseresultssuggestthat ingtoVilas(2008),thesedifferencessuggestthatthesurfaceof the values obtained for the parameters used to characterize the the asteroid covers the conjunction of two different geological 0.7 µm hydration band are independent of the location of the units.Acomparisonbetweenthesethreespectracanbeseenin asteroidsinthemainbelt. theleftpanelofFig.3fromCampinsetal.(2013).Additionalro- Articlenumber,page6of19 DavidMorateetal.:VisiblespectroscopyofErigonecollisionalfamily 1.08 45 88.6% 1.06 40 1.04 35 1.02 ds30 oi er 1 ast25 of 0.98 er20 b m u e0.96 N15 c n a 0.5 0.6 0.7 0.8 0.9 10 28.6% t c Wavelength (µm) e 5 36.4% fl 14.3% e r 0 ve1.08 C−type X−type B−type T−type i t la1.06 Bandcenter: 0.7018µm Fig. 6. Percentage of asteroids showing the 0.7 µm absorption band e (darkblue)foreachprimitivetaxonomicclass(green) R Depth: 1.64 % 1.04 . 1.02 family (see section 3.2). This result, together with the absence 1 ofthe0.7µmabsorptionbandinallthesubsequentvisiblespec- traofRyuguobtainedbyotherauthors,suggestthattheabsorp- 0.98 tionbandobservedintheJuly2007spectrumfromVilas(2008) mightbeduetosomeartifact. 0.96 Regarding (101955) Bennu, a primitive (p = 0.043) and V rathersmall(∼500m)near-Earthasteroid,theonlyavailablevis- 0.5 0.6 0.7 0.8 0.9 ibledataarefoundinClarketal.(2011)andHergenrotheretal. Wavelength (µm) (2013). According to these studies, Bennu is classified as a B- typeasteroidintheBus&Binzel(2002)taxonomy.Inaddition, Fig. 5. Example figure of the process followed to compute the cen- inBinzeletal.(2015),spectraobtainedintheNIRrangeshow tralwavelengthpositionandthedepthofthe0.7µmabsorptionband spectralvariability,pointingtowardsaC-typeclassaccordingto on the spectra of asteroid (72384). Top panel shows the straight line DeMeoetal.(2009).AsithasbeenshowninClarketal.(2010) (green)usedtoremovethecontinuumfromthefittedabsorptionband and de León et al. (2012), asteroids classified as B-types in the (redcurve).Bottompanelshowstheresultofthiscontinuumremoval andtheiterativeprocedureusingaMonteCarlomodeltocomputethe visiblecanpresentconsiderableslopevariationintheNIR,from mentionedbandparameters(seetextfordetails). negative, blue slopes, to positive, redder ones. The lower panel ofFig.7showsthevisiblespectrumofBennu(black)compared tothemeanvisiblespectraoftheasteroidsoftheErigonefamily tationallyresolvedvisiblespectraof(162173)Ryuguwerepre- classifiedasC-types(andsubclasses),inred,andthoseclassified sented by Lazzaro et al. (2013), Moskovitz et al. (2013), and asB-typesinblue,observedinthiswork.Fromavisualinspec- Sugitaetal.(2013),allofthemcompatiblewithaC-typeclassifi- tion, the visible spectrum of Bennu seems to marginally show cationandshowingnoabsorptionfeatureat0.7µmandaspectral the presence of the hydration feature 0.7 µm. We followed the slopesimilartotheSeptember2007spectrumfromVilas(2008), same approach as in the previous section in order to study the making very unlikely the suggestion of two different surfaces. presenceofapossibleaqueousalterationband.Ourcalculations Therefore,beingtheonewiththehighestsignal-to-noise,wese- yielded the presence of a band centered at 7486±76 Å, with a lected it to perform our spectral comparison. The upper panel depthof0.96±0.02%.Thisdepthisslightlybelowthethreshold of Fig. 7 shows the September 2007 (Vilas 2008) spectrum of (1%)establishedforapositivedetection,andthewavelengthpo- Ryugucomparedtothemeanvisiblespectraoftheasteroidsof sitionofthebandcenterissignificantlydifferentfromthemean theErigonefamilyclassifiedasC-types(andsubclasses),inred, valuefoundforthefamily(7053±160Å).Therefore,weruleout andthoseclassifiedasB-typesinblue.Thevisiblespectrumof thepresenceofthishydrationbandinthespectrumofBennu. RyuguisingoodagreementwiththemeanspectrumofC-type asteroidsintheErigonefamily,evenifnotshowingthe0.7µm 4. Discussion absorptionfeature. Even if the signal-to-noise is quite poor, we have done the Nopreviousspectroscopicstudieshadbeenperformeduntilnow exerciseofcomputingboththewavelengthcentralpositionand ontheErigoneprimitivecollisionalfamily,withonlytwoaster- thebanddepthofthe0.7µmabsorptionbandpresentintheJuly oidsalreadyclassifiedusingvisiblespectroscopy:(163)Erigone, 2007spectrumofRyugu(Vilas2008).Ourcalculationsyielded and(571)Dulcinea.Itisclearlyshownthattheasteroidsstudied adepthof11.7±1.3%,andabandcenterof6870±55Å.Theab- in this work are spectroscopically consistent with the hypothe- sorptionbanddepthandbandcenterareverydifferentfromthe sisofacommonparentbody,andthatthisparentbodyis(163) meanvaluescomputedbyFornasieretal.(2014),andalsofrom Erigone,classifiedasaC-typeasteroid.Moreover,(163)Erigone theonescomputedinthisworkfortheasteroidsintheErigone shares the particular spectroscopic feature at 0.7 µm with most Articlenumber,page7of19 A&Aproofs:manuscriptno.Morate_Erigones_LatestVersion 1.3 Ryugu (Vilas, September 07) C−type 1.15 Erigone mean C−type B−type 1.2 nce1.1 Erigone mean B−type ance XT−−ttyyppee a ct1.1 t e c1.05 fl e e fl r ere 1 ative 1 tiv0.95 Rel0.9 a el0.9 R 0.8 0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.85 Wavelength(microns) 0.08. 45 0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95 Fig.8.ComputedmeanspectraoftheasteroidsintheErigonefamily Wavelength (µm) classifiedasC-types(red),B-types(blue),X-types(black),andT-types (green). The mean spectrum for each class is plotted as a thick line, while the ±1σ of the mean is shown with dashed lines. Note that the differentmeanspectraarewelldifferentiatedfromoneanother. Bennu (Clark et al. 2011) 1.15 Erigone mean B−type b) ThemajorityoftheprimitiveasteroidsintheErigonefamily nce1.1 Erigone mean C−type (52outof90)showevidenceofaqueousalteredmineralson a their surfaces. We conducted the same analysis as that de- t c1.05 scribed in Section 3.2 for the data in de León et al. (2015), e fl and we found that, according to our criterion, only one ob- re 1 ject in the Polana family (asteroid 29626), showed the 0.7 e tiv0.95 µmabsorptionfeature,havingabanddepthof1.15±0.11% ela0.9 and a band center of 7300 ± 211Å. This difference in the R two families is well explained by their two parent bodies. 0.85 Asteroid (142) Polana shows no signs at all of the hydra- tion feature at 0.7 µm. On the other hand, (163) Erigone, 0.8 0.45 0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95 the parent body of the Erigone family, shows evidence of Wavelength (µm) aqueous alteration. Therefore, the presence of the hydra- tion feature in the spectra of most of its family members is Fig.7.ComparisonbetweentheSeptember2007(Vilas2008)visible somewhat expected. An interesting explanation for the dif- spectrumofRyuguinthetoppanelandthevisiblespectrumof(101955) ference in hydration between the two families is presented BennufromClarketal.(2011)inthebottompanel,withthemeanspec- by Matsuoka et al. (2015). They propose that space weath- traoftheC-type(red)andB-type(blue)asteroidsintheErigonefamily. eringeffectsonC-typeasteroidstendtoshallowthe0.7µm Standarddeviationofthemean(±1σ)isshownwithverticallines. absorption feature. Space weathering processes might have removed the aqueous alteration band in the Polana family, of the family members. Another primitive collisional family in since the Polana family is older than Erigone: according to theinnerbelt,thePolanafamily,that,togetherwithErigone,Su- Bottke et al. (2015), Erigone is 130 ± 30 Myr old, while lamitis,andClarissa,arethefourprimitivefamiliesintheinner Polana(referredtoasNewPolanaintheirpaper)andEulalia belt, has been recently studied by several authors (Walsh et al. are1400±150Myrold,and830+370Myroldrespectively. −100 2013; Milani et al. 2014; Dykhuis & Greenberg 2015; de León RegardingthelikelihoodoftheErigonefamilyofbeingthe et al. 2015; Pinilla-Alonso et al. 2015). Comparing our results source for the asteroids (101955) Bennu and (162173) Ryugu, on the Erigone family with those obtained from de León et al. wehavecomparedvisiblespectraofbothobjectswiththemean (2015)forthePolanafamily,weobservetwomaindifferences: spectraoftheprimitiveasteroidsinthefamily.Inoursample,we havefoundapproximately56%ofnon-interlopersshowingevi- a) The Erigone family presents a different distribution of dence of aqueous alteration. According to Bottke et al. (2015), taxonomicalclassesfromthatofthePolanafamily,referred there is little to no chance for the smaller families (Erigone, to as the Polana-Eulalia complex in de León et al. (2015). ClarissaandSulamitis)tobethesourceofbothasteroids: In our sample, we found 44 C-type objects, 28 X-types, 11 B-types and 7 T-types, plus 13 interlopers (S-types - (101955) Bennu: Bennu is classified as a B-type asteroid and L-types). The mean spectra for each class are clearly in the visible wavelength range, according to Clark et al. differentiated, specially in the case of the X and T classes (2011) and Hergenrother et al. (2013). Even if the fraction (seeFig.8).Onthecontrary,inthePolanafamilywefound of B-type asteroids in the Erigone family is small, and the mainlyC-types(51%)andB-types(42%),withfewX-types probability of Bennu coming from the Erigone family is (5%)andonlyoneS-type,withthemeanspectrafortheC-, small(Bottkeetal.2015),thespectralcomparisonbetween B-, and X-types presenting similar values (de León et al. thespectrumofBennuandthemeanspectrumoftheB-type 2015). In addition, the slope distribution for the objects in asteroidsiscompatiblewithapossibleoriginintheErigone the Erigone family is fairly redder than that of the Polana family. family, as can be seen in Fig. 4, mainly due to the larger fractionofX-typesfoundintheformer. - (162173)Ryugu:Intheirpaper,Vilas(2008)reportthepres- enceofanaqueousalterationbandaround0.7µminoneof Articlenumber,page8of19 DavidMorateetal.:VisiblespectroscopyofErigonecollisionalfamily thethreevisiblespectraobtainedforRyugu(July2007,see Acknowledgements. DMgratefullyacknowledgestheSpanishMinistryofEcon- their Fig. 4). Following the same approach we used for our omyandCompetitiveness(MINECO)forthefinancialsupportreceivedinthe aqueousalterationstudy,thedepthofthebandwecomputed form of a Severo-Ochoa PhD fellowship, within the Severo-Ochoa Interna- tional PhD Program. DM, JdL, JL, and VL acknowledge support from the intheJuly2007spectrumfromVilas(2008),11.7±1.3%,is projectAYA2012-39115-C03-03andESP2013-47816-C4-2-P(MINECO).JdL far from the medium depth of the aqueous altered asteroids acknowledgessupportfromtheInsitutodeAstrofísicadeCanarias.HCacknowl- inFornasieretal.(2014)(2.8±1.2%)andalsointhiswork edgessupportfromNASA’sNear-EarthObjectObservationsprogramandfrom (2.9 ± 1.5%). However, from the spectral comparison, the theCenterforLunarandAsteroidSurfaceSciencefundedbyNASA’sSSERVI programattheUniversityofCentralFlorida.Theauthorsgratefullyacknowledge possibility of JU originating in the Erigone family should 3 thereviwer,SoniaFornasier,forhercommentsandsuggestions.Theresultsob- not be discarded. Ryugu is a C-type asteroid, and the most tainedinthispaperarebasedonobservationsmadewiththeGranTelescopio abundant spectral classes in the Erigone family are C-type Canarias(GTC),installedintheSpanishObservatoriodelRoquedelosMucha- asteroids and subclasses (Cb,Cg,Ch and Cgh). This would chosoftheInstitutodeAstrofísicadeCanarias,intheislandofLaPalma. point to a possible origin of Ryugu in the Erigone family, evenifallthevisiblespectraofthisasteroidobtainedbydif- ferentauthorsshowno0.7µmabsorptionband. References SincethePolanafamily,suggestedinBottkeetal.(2015)as Barucci,M.A.,Doressoundiram,A.,Fulchignoni,M.,etal.1998,Icarus,132, themostprobablesourceforbothNEAs,doesnotshowsignsof 388 Bevington,P.R.&Robinson,D.K.1992,Datareductionanderroranalysisfor aqueousalteredasteroids(Walshetal.2013;Dykhuis&Green- thephysicalsciences berg 2015; de León et al. 2015), the Erigone family cannot be Binzel,R.P.,DeMeo,F.E.,Burt,B.J.,etal.2015,Icarus,256,22 discardedasapossiblesourceforbothNEAs.Furtherobserva- Binzel,R.P.,Harris,A.W.,Bus,S.J.,&Burbine,T.H.2001,Icarus,151,139 Binzel,R.P.&Xu,S.1993,Science,260,186 tions of (101955) Bennu and (162173) Ryugu should be done Bottke,W.F.,Morbidelli,A.,Jedicke,R.,etal.2002,Icarus,156,399 inordertocheckwhetherthe3µmabsorptionfeatureispresent Bottke,W.F.,Vokrouhlický,D.,Walsh,K.J.,etal.2015,Icarus,247,191 ornot,definitelyindicatingevidenceofaqueousalteration,and Bus,S.J.1999,PhDthesis,MASSACHUSETTSINSTITUTEOFTECHNOL- OGY confirmingorrulingoutthechancesforErigonebeingthesource Bus,S.J.&Binzel,R.P.2002,Icarus,158,146 oftheseobjects. Campins,H.,deLeón,J.,Morbidelli,A.,etal.2013,AJ,146,26 Campins,H.,Morbidelli,A.,Tsiganis,K.,etal.2010,ApJ,721,L53 Carvano,J.M.,Mothé-Diniz,T.,&Lazzaro,D.2003,Icarus,161,356 Cepa,J.2010,inHighlightsofSpanishAstrophysicsV,ed.J.M.Diego,L.J. 5. Conclusions Goicoechea,J.I.González-Serrano,&J.Gorgas,15 Cepa,J.,Aguiar,M.,Escalera,V.G.,etal.2000,inSocietyofPhoto-Optical We studied a total of 103 visible spectra of asteroids in the InstrumentationEngineers(SPIE)ConferenceSeries,Vol.4008,Opticaland Erigone primitive family. We observed 101 of these asteroids IRTelescopeInstrumentationandDetectors,ed.M.Iye&A.F.Moorwood, with the 10.4m Gran Telescopio Canarias. These objects had 623–631 never been observed before via spectroscopy. We added the Clark,B.E.,Binzel,R.P.,Howell,E.S.,etal.2011,Icarus,216,462 Clark,B.E.,Ziffer,J.,Nesvorny,D.,etal.2010,JournalofGeophysicalRe- visible spectra of (163) Erigone and (571) Dulcinea from the search(Planets),115,6005 SMASSdatabaseforcompleteness. deLeón,J.,Pinilla-Alonso,N.,Campins,H.,Licandro,J.,&Marzo,G.A.2012, We have seen that the slope distribution and the taxonomic Icarus,218,196 deLeón,J.,Pinilla-Alonso,N.,Delbo,M.,etal.2015,Icarus,inpress classification of the asteroids studied are in agreement with the DeMeo,F.E.,Binzel,R.P.,Slivan,S.M.,&Bus,S.J.2009,Icarus,202,160 assumption of a primitive family. Most of the observed objects DeMeo,F.E.&Carry,B.2013,Icarus,226,723 are C-types, highly consistent with the classification of (163) Dykhuis,M.J.&Greenberg,R.2015,Icarus,252,199 Fornasier,S.,Lantz,C.,Barucci,M.A.,&Lazzarin,M.2014,Icarus,233,163 Erigone, supporting its status as the parent body of the family. Fornasier,S.,Lazzarin,M.,Barbieri,C.,&Barucci,M.A.1999,A&AS,135, Intermsoftaxonomicaldistribution,42%oftheasteroidsinour 65 surveyareclassifiedasC-typeobjects,28%asX-types,11%as Hergenrother,C.W.,Nolan,M.C.,Binzel,R.P.,etal.2013,Icarus,226,663 B-types,7%asT-types,and13%oftheobjectsasnon-primitive Hirayama,K.1918,AJ,31,185 Howell,E.S.,Rivkin,A.S.,Vilas,F.,etal.2011,637 types, most likely interlopers (S-types and subclasses, and L- Landolt,A.U.1992,AJ,104,340 types). Lauretta,D.S.,Drake,M.J.,Benzel,R.P.,etal.2010,MeteoriticsandPlanetary In addition, the study on aqueous alteration performed on ScienceSupplement,73,5153 Lazzaro,D.,Barucci,M.A.,Perna,D.,etal.2013,A&A,549,L2 thegroupofprimitiveobjectsshowsahighnumberofhydrated Luu,J.X.&Jewitt,D.C.1990,AJ,99,1985 asteroids. The C-type class is the one which shows the largest Masiero,J.R.,Mainzer,A.K.,Grav,T.,etal.2011,ApJ,741,68 numberofhydratedasteroids,namely∼86%.Theotherprimitive Matsuoka,M.,Nakamura,T.,Kimura,Y.,etal.2015,Icarus,254,135 Milani,A.,Cellino,A.,Kneževic´,Z.,etal.2014,Icarus,239,46 classes, also showing hydration band, present a much smaller Moskovitz,N.A.,Abe,S.,Pan,K.-S.,etal.2013,Icarus,224,24 fraction: B-type objects, ∼36%, X-type objects, ∼28% and T- Nesvorny,D.2012,NASAPlanetaryDataSystem,189 type,∼ 14%.Thisdistributionofthehydrationasafunctionof Pinilla-Alonso,N.,deLeón,J.,Walsh,K.J.,etal.2015,Icarus,submitted Popescu,M.,Birlan,M.,&Nedelcu,D.A.2012,A&A,544,A130 thetaxonomicalclassisinagreementwiththeoneinFornasier Rivkin,A.S.2012,Icarus,221,744 etal.(2014)forasteroidsinthemainbelt. Sugita, S., Kuroda, D., Kameda, S., et al. 2013, in Lunar and Planetary Inst. Based on the spectral comparison only, and as in the case TechnicalReport,Vol.44,LunarandPlanetaryScienceConference,2591 Tsuda,Y.,Yoshikawa,M.,Abe,M.,Minamino,H.,&Nakazawa,S.2013,Acta of the Polana family, studied in de León et al. (2015), we can- Astronautica,91,356 notdiscardthepossibilityofErigonebeingthesourcefamilyfor Vilas,F.1994,Icarus,111,456 nearEarthasteroids(101955)Bennuand(162173)Ryugu.The Vilas,F.2008,AJ,135,1101 spectralclassespresentinthefamilyarecompatiblewiththetax- Vilas,F.&Gaffey,M.J.1989,Science,246,790 Vokrouhlický,D.,Brož,M.,Bottke,W.F.,Nesvorný,D.,&Morbidelli,A.2006, onomic classification of both asteroids. Future research should Icarus,182,118 includefurtherspectroscopicstudy,bothinthevisibleandnear- Walsh,K.J.,Delbó,M.,Bottke,W.F.,Vokrouhlický,D.,&Lauretta,D.S.2013, infraredregions,oftheotherprimitivefamiliesintheinnerbelt, Icarus,225,283 Zappala, V. & Cellino, A. 1994, in IAU Symposium, Vol. 160, Asteroids, suchasSulamitisandClarissa,inordertocompletelyrulethem Comets,Meteors1993,ed.A.Milani,M.diMartino,&A.Cellino,395 out as the possible sources of asteroids (101955) Bennu and Zappala,V.,Cellino,A.,Farinella,P.,&Knezevic,Z.1990,AJ,100,2030 (162173)Ryugu. Articlenumber,page9of19 A&Aproofs:manuscriptno.Morate_Erigones_LatestVersion Table3.Observationalcircumstancesoftheasteroidspresentedinthispaper.CheckTable1fortheIDnumberofeachsolaranaloguestar. Object Date UTstart Airmass Exposuretime(s) SAs Seeing(") 10992 2014-08-16 05:46 1.117 3x200 5 0.9 11856 2015-01-12 01:10 1.482 3x250 2 2.0 18759 2014-12-17 22:35 1.149 3x250 1 2.0 19415 2014-09-18 22:23 1.310 3x300 4,6 1.0 20992 2014-12-17 03:13 1.248 3x250 2 1.9 23397 2015-01-14 03:51 1.292 3x300 1,3 1.5 24037 2014-12-18 01:27 1.305 2x200 1 2.7 25381 2014-12-18 00:22 1.352 3x500 1 2.0 37437 2014-12-17 22:04 1.335 3x500 1 2.5 38106 2014-10-14 03:43 1.033 3x400 1,2 1.0 38173 2014-12-15 23:46 1.554 3x300 1,2 2.0 38661 2014-09-13 03:04 1.257 3x200 1,6 0.9 39694 2014-09-19 00:18 1.198 3x400 4,6 0.9 39895 2014-09-15 03:38 1.507 3x300 1,6 0.8 42155 2014-09-13 03:36 1.095 3x200 1,6 0.8 42552 2014-09-15 02:50 1.513 3x250 1,6 0.9 44766 2014-12-17 03:58 1.039 3x200 2 1.3 44942 2015-01-14 03:29 1.496 3x200 1,3 1.5 45357 2015-01-14 04:22 1.416 3x300 1,3 1.5 49731 2015-01-14 04:46 1.920 3x200 1,3 1.9 49859 2015-05-04 23:37 1.300 3x180 3,7 1.5 50068 2015-05-05 00:10 1.131 3x180 3,7 1.5 52870 2015-01-19 05:57 1.124 3x500 3 2.0 52891 2015-01-15 03:53 1.197 3x500 3 1.2 56349 2015-01-15 04:29 1.163 3x500 3 1.1 65354 2014-12-13 01:05 1.048 3x500 2 1.5 66309 2014-10-14 02:34 1.456 3x250 1,2 1.4 66325 2014-10-13 04:20 1.847 3x300 1,2 1.5 66403 2014-09-14 01:35 1.110 3x200 1,6 0.9 67891 2014-09-15 02:09 1.684 3x200 1,6 1.0 67918 2014-09-13 02:39 1.214 3x200 1,6 0.9 67940 2014-09-15 03:14 1.709 3x200 1,6 0.9 68114 2014-09-17 01:22 1.142 3x250 6 1.0 68685 2014-10-12 00:30 1.406 4x250 6 0.9 69266 2014-12-18 01:52 1.218 3x250 1 3.0 69706 2014-09-15 04:56 1.023 3x500 1,6 0.8 70312 2014-09-18 03:01 1.088 3x300 1,4 1.3 70361 2014-12-17 03:38 1.180 3x200 2 1.7 70427 2015-01-14 05:06 1.606 3x250 1,3 1.7 70511 2014-09-15 04:20 1.010 3x300 1,6 0.7 71932 2014-10-13 02:22 1.176 3x200 1,2 1.2 72047 2014-11-25 22:13 1.027 3x350 1 1.3 72143 2014-09-19 23:39 1.414 3x250 1,6 1.3 72230 2014-09-19 01:40 1.308 2x300 4,6 0.9 72292 2014-12-18 00:57 1.276 3x450 1 2.0 72308 2014-08-16 04:04 1.304 3x250 5 0.7 72384 2014-11-25 21:49 1.201 3x250 1 1.4 72941 2014-10-13 03:57 1.997 3x300 1,2 1.6 73860 2014-09-14 03:27 1.177 3x250 1,6 0.9 74755 2014-11-25 22:53 1.017 3x300 1 1.2 74962 2014-12-02 04:21 1.136 3x500 2 1.4 75089 2015-01-19 04:48 1.096 3x350 3 2.5 76922 2014-10-08 00:02 1.292 6x250 1,6 0.7 77421 2014-10-10 05:44 1.040 2x500 1,2 0.8 78069 2014-12-02 05:29 1.377 3x500 2 1.7 78826 2014-09-13 04:53 1.114 3x200 1,6 0.8 78889 2014-10-12 02:05 2.199 4x150 6 1.4 79044 2014-10-10 05:05 1.078 3x400 1,2 0.7 85727 2015-05-04 23:47 1.176 3x250 3,7 0.9 96405 2014-09-17 22:15 1.294 5x400 1,4 1.3 Articlenumber,page10of19

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.