ebook img

Complex Variables and Analytic Functions: An Illustrated Introduction PDF

373 Pages·2019·17.785 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Complex Variables and Analytic Functions: An Illustrated Introduction

Complex Variables and Analytic Functions Complex Variables and Analytic Functions An Illustrated Introduction Bengt Fornberg University of Colorado Boulder, Colorado Cécile Piret Michigan Technological University Houghton, Michigan Society for Industrial and Applied Mathematics Philadelphia Copyright © 2020 by the Society for Industrial and Applied Mathematics 10 9 8 7 6 5 4 3 2 1 All rights reserved. Printed in the United States of America. No part of this book may be reproduced, stored, or transmitted in any manner without the written permission of the publisher. For information, write to the Society for Industrial and Applied Mathematics, 3600 Market Street, 6th Floor, Philadelphia, PA 19104-2688 USA. Trademarked names may be used in this book without the inclusion of a trademark symbol. These names are used in an editorial context only; no infringement of trademark is intended. MATLAB is a registered trademark of The MathWorks, Inc. For MATLAB product information, please contact The MathWorks, Inc., 3 Apple Hill Drive, Natick, MA 01760-2098 USA, 508-647-7000, Fax: 508-647-7001, [email protected], www.mathworks.com. Mathematica is a registered trademark of Wolfram Research, Inc. Publications Director Kivmars H. Bowling Executive Editor Elizabeth Greenspan Developmental Editor Mellisa Pascale Managing Editor Kelly Thomas Production Editor David Riegelhaupt Copy Editor Claudine Dugan Production Manager Donna Witzleben Production Coordinator Cally A. Shrader Compositor Cheryl Hufnagle Graphic Designer Doug Smock Library of Congress Cataloging-in-Publication Data Names: Fornberg, Bengt, author. | Piret, Cécile, author. Title: Complex variables and analytic functions : an illustrated introduction / Bengt Fornberg (University of Colorado, Boulder, Colorado), Cécile Piret (Michigan Technological University, Houghton, Michigan). Description: Philadelphia : Society for Industrial and Applied Mathematics, [2020] | Series: Other titles in applied mathematics ; 165 | Includes bibliographical references and index. | Summary: “This book is the first primary introductory textbook on complex variables and analytic functions to use predominantly functional illustrations”-- Provided by publisher. Identifiers: LCCN 2019030487 (print) | LCCN 2019030488 (ebook) | ISBN 9781611975970 (paperback) | ISBN 9781611975987 (ebook) Subjects: LCSH: Functions of complex variables--Textbooks. | Analytic functions--Textbooks. Classification: LCC QA331.7 .F67 2020 (print) | LCC QA331.7 (ebook) | DDC 515/.942--dc23 LC record available at https://lccn.loc.gov/2019030487 LC ebook record available at https://lccn.loc.gov/2019030488 is a registered trademark. Contents Preface ix 1 ComplexNumbers 1 1.1 Howtothinkaboutdifferenttypesofnumbers . . . . . . . . . . . . . 1 1.2 Definitionofcomplexnumbers . . . . . . . . . . . . . . . . . . . . . 2 1.3 Thecomplexnumberplaneasatoolforplanargeometry . . . . . . . 8 1.4 Stereographicprojection . . . . . . . . . . . . . . . . . . . . . . . . . 10 1.5 Supplementarymaterials . . . . . . . . . . . . . . . . . . . . . . . . 11 1.6 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 2 FunctionsofaComplexVariable 17 2.1 Derivative . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 2.2 Someelementaryfunctionsgeneralizedtocomplexargumentbymeans oftheirTaylorexpansion . . . . . . . . . . . . . . . . . . . . . . . . 22 2.3 AdditionalobservationsonTaylorexpansionsofanalyticfunctions . . 33 2.4 Singularities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 2.5 Multivaluedfunctions—BranchcutsandRiemannsheets . . . . . . . 43 2.6 Sequencesofanalyticfunctions . . . . . . . . . . . . . . . . . . . . . 51 2.7 Functionsdefinedbyintegrals . . . . . . . . . . . . . . . . . . . . . . 54 2.8 Supplementarymaterials . . . . . . . . . . . . . . . . . . . . . . . . 56 2.9 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62 3 AnalyticContinuation 71 3.1 Introductoryexamples . . . . . . . . . . . . . . . . . . . . . . . . . . 71 3.2 Somemethodsforanalyticcontinuation . . . . . . . . . . . . . . . . 73 3.3 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89 4 IntroductiontoComplexIntegration 93 4.1 IntegrationwhenaprimitivefunctionF(z)isavailable . . . . . . . . 95 4.2 Contourintegration . . . . . . . . . . . . . . . . . . . . . . . . . . . 97 4.3 Laurentseries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106 4.4 Supplementarymaterials . . . . . . . . . . . . . . . . . . . . . . . . 112 4.5 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114 5 ResidueCalculus 119 5.1 Residuecalculus . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119 5.2 Infinitesums . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 148 v vi Contents 5.3 Analyticcontinuationwithuseofcontourintegration . . . . . . . . . 152 5.4 WeierstrassproductsandMittag–Lefflerexpansions . . . . . . . . . . 160 5.5 Supplementarymaterials . . . . . . . . . . . . . . . . . . . . . . . . 165 5.6 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 166 6 Gamma,Zeta,andRelatedFunctions 173 6.1 Thegammafunction . . . . . . . . . . . . . . . . . . . . . . . . . . . 173 6.2 Thezetafunction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 176 6.3 TheLambertW-function . . . . . . . . . . . . . . . . . . . . . . . . 181 6.4 Supplementarymaterials . . . . . . . . . . . . . . . . . . . . . . . . 184 6.5 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 186 7 EllipticFunctions 191 7.1 Someintroductoryremarksonsimplyperiodicfunctions. . . . . . . . 191 7.2 Somebasicpropertiesofdoublyperiodicfunctions. . . . . . . . . . . 191 7.3 TheWeierstrass℘-function . . . . . . . . . . . . . . . . . . . . . . . 194 7.4 TheJacobiellipticfunctions . . . . . . . . . . . . . . . . . . . . . . . 197 7.5 Supplementarymaterials . . . . . . . . . . . . . . . . . . . . . . . . 203 7.6 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 207 8 ConformalMappings 209 8.1 Relationsbetweenconformalmappingsandanalyticfunctions. . . . . 211 8.2 Mappingsprovidedbybilinearfunctions . . . . . . . . . . . . . . . . 212 8.3 Riemann’smappingtheorem . . . . . . . . . . . . . . . . . . . . . . 214 8.4 Mappingsofpolygonalregions . . . . . . . . . . . . . . . . . . . . . 215 8.5 Someapplicationsofconformalmappings . . . . . . . . . . . . . . . 219 8.6 RevisitingtheJacobiellipticfunctionsn(z,k) . . . . . . . . . . . . . . 222 8.7 Supplementarymaterials . . . . . . . . . . . . . . . . . . . . . . . . 226 8.8 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 227 9 Transforms 231 9.1 Fouriertransform . . . . . . . . . . . . . . . . . . . . . . . . . . . . 231 9.2 Laplacetransform . . . . . . . . . . . . . . . . . . . . . . . . . . . . 245 9.3 Mellintransform . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 255 9.4 Hilberttransform . . . . . . . . . . . . . . . . . . . . . . . . . . . . 259 9.5 z-transform . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 264 9.6 Threeadditionaltransformsrelatedtorotations . . . . . . . . . . . . . 264 9.7 Supplementarymaterials . . . . . . . . . . . . . . . . . . . . . . . . 266 9.8 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 268 10 Wiener–HopfandRiemann–HilbertMethods 273 10.1 TheWiener–Hopfmethod . . . . . . . . . . . . . . . . . . . . . . . . 273 10.2 AbriefprimeronRiemann–Hilbertmethods . . . . . . . . . . . . . . 286 10.3 Supplementarymaterials . . . . . . . . . . . . . . . . . . . . . . . . 288 10.4 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 289 11 SpecialFunctionsDefinedbyODEs 291 11.1 Airy’sequation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 292 11.2 Besselfunctions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 293 Contents vii 11.3 Hypergeometricfunctions . . . . . . . . . . . . . . . . . . . . . . . . 299 11.4 ConvertinglinearODEstointegrals . . . . . . . . . . . . . . . . . . . 303 11.5 ThePainlevéequations . . . . . . . . . . . . . . . . . . . . . . . . . 307 11.6 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 314 12 SteepestDescentforApproximatingIntegrals 317 12.1 Asymptoticvs.convergentexpansions . . . . . . . . . . . . . . . . . 317 12.2 Euler–Maclaurinformula . . . . . . . . . . . . . . . . . . . . . . . . 319 12.3 Laplaceintegrals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 322 12.4 Steepestdescent . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 329 12.5 Supplementarymaterials . . . . . . . . . . . . . . . . . . . . . . . . 346 12.6 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 350 Bibliography 355 Index 359 Preface The topics of Complex Variables and Analytic Functions are of fundamental impor- tancenotonlyinpuremathematics,butalsothroughoutappliedmathematics,physics,and engineering. Their theorems and formulas also simplify many results from calculus and forfunctionsofrealvariables. Thereisalreadyawidechoiceoftextbooksavailable,rang- ingfromtimelessclassicssuchasbyWhittakerandWatson[41],Copson[8]andAhlfors [2],1 tomanylaterones,raisingthequestionofwhyanyonewouldwanttoseeyetanother one. Our main motivation lies in the evolution that has occurred in other fields. For the last half century or so, it has been unthinkable to use introductory text books for calcu- lus that do not graphically illustrate the basic elementary functions, such as f(x) = x2, √ f(x) = x,f(x) = sinx,f(x) = logx,etc. Whenwefirsttaughtacourseoncomplex variables and analytic functions, we became puzzled about why complex variables texts shouldnotalsovisuallybuildontherealcases,familiartoallstudents,andthenliberally illustratehowthesesamefunctionsextendawayfromtherealaxis. Whileformulasalone forsomestudentsmightprovideafeasiblealternativetovisualimpressions,weareaiming this text at students that find the latter to be helpful for gaining at least their initial intu- itivefeelingforthesubject. Althoughwehaveincludedanabundanceofillustrations(and givebriefcodetemplatesfordisplayinganalyticfunctionswithMATLABandMathemat- ica),thisbookisanintroductiontotheclassicaltheoryofcomplexvariablesandanalytic functions. It contains enough materials to support a two-semester course, but has been structuredtomakeiteasytoomitchaptersorsectionsasneededforaone-semestercourse (offeringalotofflexibilityincourseemphasis). SIAM’swebsiteforthisbook, available fromwww.siam.org/books/ot165,contains“NotestoInstructors,”withsuggestionsfordif- ferentone-andtwo-semestersyllabi, ideasforsupplementarystudentprojects, etc. Once asolutionmanualforalltheexercisesinthetexthasbeendeveloped, itwillalsoprovide informationforhowinstructorscangetaccesstoit. Textbooksoftendifferwithregardtotheorderinwhichtopicsarecovered.Onestrategy is to make sure each step follows rigorously from previous steps. While that can have someappeal,itmightnotnecessarilybethebestorderfordevelopinganinitialconceptual understanding,anditalsodoesnotcorrespondtohowmathematicalproblemsolvingand researchiscarriedout.2 Introducingkeyideasearlyonmightrequirecertainissuestobe revisitedlater,onceadditionaltoolshavefalleninplace. Ineithercase,theendknowledge 1Supplementingthesetexts,JahnkeandEmde’s“TablesofFunctions”[28]hasexcellent(precomputerera) illustrations,butlackstextbook-typematerials. 2TheeminentmathematicianPaulHalmoswritesinhisautobiography[24,page321]:“Mathematicsisnota deductivescience-that’sacliché.Whenyoutrytoproveatheorem,youdon’tjustlistthehypotheses,andthen starttoreason. Whatyoudoistrialanderror,experimentation,guesswork. Youwanttofindoutwhatthefacts are,andwhatyoudoisinthatrespectsimilartowhatalaboratorytechniciandoes.” ix

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.