ebook img

Complex and Symplectic Geometry PDF

262 Pages·2017·3.779 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Complex and Symplectic Geometry

Springer INdAM Series 21 Daniele Angella Costantino Medori Adriano Tomassini E ditors Complex and Symplectic Geometry Springer INdAM Series Volume 21 Editor-in-Chief G.Patrizio SeriesEditors C.Canuto G.Coletti G.Gentili A.Malchiodi P.Marcellini E.Mezzetti G.Moscariello T.Ruggeri Moreinformationaboutthisseriesathttp://www.springer.com/series/10283 Daniele Angella • Costantino Medori (cid:129) Adriano Tomassini Editors Complex and Symplectic Geometry 123 Editors DanieleAngella CostantinoMedori DipartimentodiMatematicaeInformatica DipartimentodiScienzeMatematiche, ‘UlisseDini’ FisicheeInformatiche UniversityofFlorence UniversityofParma Firenze,Italy Parma,Italy AdrianoTomassini DipartimentodiScienzeMatematiche, FisicheeInformatiche UniversityofParma Parma,Italy ISSN2281-518X ISSN2281-5198 (electronic) SpringerINdAMSeries ISBN978-3-319-62913-1 ISBN978-3-319-62914-8 (eBook) DOI10.1007/978-3-319-62914-8 LibraryofCongressControlNumber:2017954886 ©SpringerInternationalPublishingAG2017 Thisworkissubjecttocopyright.AllrightsarereservedbythePublisher,whetherthewholeorpartof thematerialisconcerned,specificallytherightsoftranslation,reprinting,reuseofillustrations,recitation, broadcasting,reproductiononmicrofilmsorinanyotherphysicalway,andtransmissionorinformation storageandretrieval,electronicadaptation,computersoftware,orbysimilarordissimilarmethodology nowknownorhereafterdeveloped. Theuseofgeneraldescriptivenames,registerednames,trademarks,servicemarks,etc.inthispublication doesnotimply,evenintheabsenceofaspecificstatement,thatsuchnamesareexemptfromtherelevant protectivelawsandregulationsandthereforefreeforgeneraluse. Thepublisher,theauthorsandtheeditorsaresafetoassumethattheadviceandinformationinthisbook arebelievedtobetrueandaccurateatthedateofpublication.Neitherthepublishernortheauthorsor theeditorsgiveawarranty,expressorimplied,withrespecttothematerialcontainedhereinorforany errorsoromissionsthatmayhavebeenmade.Thepublisherremainsneutralwithregardtojurisdictional claimsinpublishedmapsandinstitutionalaffiliations. Printedonacid-freepaper ThisSpringerimprintispublishedbySpringerNature TheregisteredcompanyisSpringerInternationalPublishingAG Theregisteredcompanyaddressis:Gewerbestrasse11,6330Cham,Switzerland Preface This volume, which brings together state-of-the-art contributions from a range of experts,isbasedontheINdAMMeeting“ComplexandSymplecticGeometry”,held in Cortona fromJune 12 to 18, 2016and organizedby Daniele Angella,Paolo de Bartolomeis,CostantinoMedori,andAdrianoTomassini.Awidevarietyofresearch topics of currentinterest in differentialand algebraic geometryare coveredin the volume; however, the focus is particularly on complex and symplectic geometry and their cohomologicaland topologicalaspects; on complexanalysis and related topics,suchasCauchy-Riemannmanifolds,Okatheory,andpluripotentialtheory; on algebraic and complex surfaces; on Kähler geometry; and on special metrics on complex manifolds. The final outcome is a challenging panoramic view of problemsconnectingawidearea.Thereisnodoubtthattheconferenceencouraged a veryfruitfulexchangeof ideasand initiatedimportantcollaborationsamongthe participants. During the preparation of this volume, our friend Paolo de Bartolomeis sadly passedaway.Wewouldliketodedicatethisvolumetohim.Allparticipantsatthe conferenceandnumerousothermathematicianshavehadtheprivilegeofspending timeandinteractingwithPaolo.Wewillallmisshimgreatly. Firenze,Italy DanieleAngella Parma,Italy CostantinoMedori Parma,Italy AdrianoTomassini June2017 v Contents Generalized Connected Sum Constructions for Resolutions ofExtremalandKcscOrbifolds................................................ 1 ClaudioArezzo Ohsawa-TakegoshiExtension Theorem for Compact Kähler ManifoldsandApplications..................................................... 19 JunyanCao TeichmüllerSpacesofGeneralizedHyperellipticManifolds................ 39 FabrizioCataneseandPietroCorvaja TheMonge-AmpèreEnergyClassE........................................... 51 EleonoraDiNezza Quasi-NegativeHolomorphicSectionalCurvatureandAmpleness oftheCanonicalClass........................................................... 61 SimoneDiverio SurjectiveHolomorphicMapsontoOkaManifolds.......................... 73 FrancForstnericˇ StabilizedSymplecticEmbeddings............................................. 85 RichardHind Onthe Obstructionof the DeformationTheory in the DGLA ofGradedDerivations........................................................... 95 PaolodeBartolomeisandAndreiIordan CohomologiesonHypercomplexManifolds................................... 107 MehdiLejmiandPatrickWeber TheTeichmüllerStack........................................................... 123 LaurentMeersseman vii viii Contents EmbeddingofLCKManifoldswithPotentialintoHopfManifolds UsingRiesz-SchauderTheorem................................................ 137 LiviuOrneaandMishaVerbitsky OrbitsofRealForms,MatsukiDualityandCR-cohomology............... 149 StefanoMariniandMauroNacinovich GeneralizedGeometryofNordenandParaNordenManifolds ............ 163 AntonellaNannicini SpectralandEigenfunctionAsymptoticsinToeplitzQuantization......... 179 RobertoPaoletti OnBi-HermitianSurfaces ...................................................... 191 M.Pontecorvo Kähler-Einstein Metrics on Q-Smoothable Fano Varieties, TheirModuliandSomeApplications.......................................... 211 CristianoSpotti CohomologicalAspectsonComplexandSymplecticManifolds............ 231 NicolettaTardini TowardstheClassificationofClassVIISurfaces............................. 249 AndreiTeleman Generalized Connected Sum Constructions for Resolutions of Extremal and Kcsc Orbifolds ClaudioArezzo Abstract In this note we review recent progresses on the existence problem of extremaland Kählerconstantscalar curvaturemetricsoncomplexmanifolds.The contentofthisnoteisanexpandedversionofauthor’stalk“Kahlerconstantscalar curvaturemetricsonblowupsandresolutionsofsingularities”givenattheINdAM MeetingComplexandSymplecticGeometry,Cortona,June12–18,2016. 1 Introduction In [3, 4, 7, 25] and [27] a general existence theory for extremal and Kähler constant scalar curvature (Kcsc from now on) metrics on blow ups at smooth points of extremaland Kcsc manifoldshas been developedand variousimportant consequenceshavebeendeduced. For a general introductionto these (and other related) results we will refer the readertothetwosurveys[2]and[26]. Inthisnotewewilldescribehowthesametechniqueof“generalisedconnected sumconstruction”forextremalandKcscmetricscanbeappliedtotheproblemof resolvingisolatedsingularitieskeepingthemetriccanonical(i.e.extremalorKcsc). Wetakethisopportunitytopresenttheresultscontainedinanumberofpapersina unifiedformandtoclarifysomerelationshipanddifferences. Wewillreferto[5,8–10],and[6]fordetailsandproofs. Thestructureofthisnoteisasfollows:inSect.2wereviewthegeneralgeometric construction which lies at the base of the problem. In Sect.3 we discuss how the extremalmetricscanbeliftedfromasingularbasetoasmoothdesingularization(or toapartialdesingularization).InSect.4westudythesameproblemfortheKähler constantscalarcurvatureequation.Thisiscertainlythemostinterestingcaseinthat twoapproachesarepossible,onelookingatextremalmetricsandthenimposingthe C.Arezzo((cid:2)) ICTP,Trieste,Italy ©SpringerInternationalPublishingAG2017 1 D.Angellaetal.(eds.),ComplexandSymplecticGeometry,Springer INdAMSeries21,DOI10.1007/978-3-319-62914-8_1 2 C.Arezzo vanishingoftheFutakiinvariant(wewillrefertothisastothealgebraicapproach), andadirectPDEapproach,theanalyticapproach. InSect.5wedescribearecentextensionoftheseworkstothemoregeneralcase ofisolated conicalsingularitiesnotnecessarilyofquotienttype.Finally,in Sect.6 wedescribeafurtherextensionoftheseresulttonon-compactmanifolds. 2 Resolving IsolatedSingularities:TheGeneralised Connected SumConstruction WestartwithanextremalorKcscbaseMwithisolatedquotientsingularities,hence locallyoftheformCm=(cid:2),wheremisthecomplexdimensionofM,and(cid:2) isafinite subgroupofU.m/actingfreelyawayfromtheorigin. Givensuchasingularobjectonewouldliketoreplaceasmallneighborhoodofa singularpointpandreplaceitwithalargepieceofaKählerresolution(cid:3)W.X ;(cid:4)/! p Cm=(cid:2)keepingthescalarcurvatureconstant(andclosetothestartingone).Forsuch aconstructiontoevenhaveachancetopreservetheextremalorKcscequationitis necessarythat .X ;(cid:4)/ is scalar flat, i.e. it is necessary to assume that Cm=(cid:2) hasa p scalarflatALEresolution. Havingthenfixedasetofsingularpointsfp1;:::;png(cid:2) Meachcorresponding toagroup(cid:2)j,anddenotedbyBj;r WD fz2Cm=(cid:2)j W jzj <rg;wecandefine,forall r>0smallenough(sayr2.0;r0/) Mr WDMn[jBj;r: (1) On the otherside, for eachj D 1;:::;n, we are givena m-dimensionalKähler manifold .X(cid:2)j;(cid:4)j/, with one end biholomorphic to a neighborhood of infinity in Cm=(cid:2)j. Dual to the previousnotationson the base manifold,we set Cj;R WD fx 2 Cn=(cid:2) W jxj > Rg; the complementof a closed large ball and the complementof j anopenlargeballinX(cid:2) (inthecoordinateswhichparameterizeaneighborhoodof j infinityinX(cid:2)).Wedefine,forallR>0largeenough(sayR>R0) j X(cid:2)j;R WDX(cid:2)j nCj;R: (2) whichcorrespondstothemanifoldX(cid:2) whoseendhasbeentruncated.Theboundary j ofX(cid:2)j;Risdenotedby@Cj;R. Wearenowinapositiontodescribethegeneralizedconnectedsumconstruction. Indeed,forall"2.0;r0=R0/,wechooser" 2."R0;r0/anddefine R" WD r"": (3) Byconstruction MQ WDM[p1;"X(cid:2)1 [p2;"(cid:3)(cid:3)(cid:3)[pn;"X(cid:2)n;

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.