Completing causal networks by meta-level abduction Katsumi Inoue, Andrei Doncescu, Hidetomo Nabeshima To cite this version: Katsumi Inoue, Andrei Doncescu, Hidetomo Nabeshima. Completing causal networks by meta-level abduction. Machine Learning, 2013, 91 (2), pp.239-277. hal-00999312 HAL Id: hal-00999312 https://hal.archives-ouvertes.fr/hal-00999312 Submitted on 4 Jun 2014 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. MachineLearningmanuscriptNo. (willbeinsertedbytheeditor) Completing causal networks by meta-level abduction KatsumiInoue · AndreiDoncescu · Hidetomo Nabeshima Received:date/Accepted:date Abstract Meta-levelabductionisamethodtoabducemissingrulesinexplainingobserva- tions.Byrepresentingrulestructuresofaprobleminaformofcausalnetworks,meta-level abductioninfersmissinglinksandunknownnodesfromincompletenetworkstocomplete pathsforobservations.Weexamineapplicabilityofmeta-levelabductiononnetworkscon- taining both positive and negative causal effects. Such networks appear in many domains includingbiology,inwhichinhibitoryeffectsareimportantinseveralbiologicalpathways. Reasoninginnetworkswithinhibitioninvolvesnonmonotonicinference,whichcanbere- alizedbymakingdefaultassumptionsinabduction.Weshowthatmeta-levelabductioncan consistentlyproducebothpositiveandnegativecausalrelationsaswellasinventednodes. Case studies of meta-level abduction are presented in p53 signaling networks, in which causalrelationsareabducedtosuppressatumorwithanewproteinandtostopDNAsynthe- siswhendamagehasoccurred.Effectsofourmethodarealsoanalyzedthroughexperiments ofcompletingnetworksrandomlygeneratedwithbothpositiveandnegativelinks. Keywords abduction·theorycompletion·meta-reasoning·causalnetwork·inhibition· predicateinvention·defaultreasoning·InductiveLogicProgramming·SystemsBiology This research was supported in part by the 2008-2011 JSPS Grant-in-Aid for Scientific Research (A) No.20240016. K.Inoue NationalInstituteofInformatics 2-1-2Hitotsubashi,Chiyoda-ku,Tokyo 101-8430, Japan E-mail:[email protected] A.Doncescu LAAS-CNRSUPR8001 AvenueduColonelRoche, 31007Toulouse, France E-mail:[email protected] H.Nabeshima DivisionofMedicineandEngineeringScience, UniversityofYamanashi 4-3-11Takeda,Kofu,Yamanashi 400-8511, Japan E-mail:[email protected] 2 1 Introduction Abductionandinductionarebothampliativereasoning,andplayessentialrolesinknowl- edge discovery and development in science and technology. Integration of abduction and inductionhasbeendiscussedinsuchdiverseaspectsasimplementationofinductivelogic programming(ILP)systemsusingabductivemethods[67,14,52,54,27,3]and“closingthe loop” methodologies in scientific discovery [10,28,55]. The use of prior or background knowledge in scientific applications has directed our attention to theory completion [40] rather than classical learning tasks such as concept learning and classification. There, ab- duction is mainly used to complete proofs of observations from incomplete background knowledge,whileinductionreferstogeneralizationofabducedcases. Inscientificdomains,backgroundknowledgeisoftenstructuredinaformofnetworks. Inbiology,asequenceofsignalingsorbiochemicalreactionsconstitutesanetworkcalleda pathway,whichspecifiesamechanismtoexplainhowgenesorcellscarryouttheirfunc- tions.However,informationofbiologicalnetworksinpublic-domaindatabasesisgenerally incompleteinthatsomedetailsofreactions,intermediarygenes/proteinsorkineticinforma- tionareeitheromittedorundiscovered.Todealwithincompletenessofpathways,weneed topredictthestatusofrelationswhichisconsistentwiththestatusofnodes[63,68,51,21, 55],orinsertmissingarcsbetweennodestoexplainobservations[69,28,65,1].Thesegoals are characterized by abduction as theory completion, in which status of nodes or missing arcsareaddedtoaccountforobservations. If a network is represented in a logical theory, inference on the network can be real- ized on a language in which each network element such as a node and a link is itself an entity of the language. Such a theory (or program) refers a language of the network, and is hence regarded as a meta-theory (or meta-program), while a theory (or program) rep- resenting networks is referred to as an objective theory (or objective program). Then, to performabductiononnetworks,weneedabductiononmeta-theories,whichisreferredto asmeta-levelabduction.Notethatmeta-reasoninghasbeenintensivelyinvestigatedinlogic programming,e.g.,[29,12,4],yetmaininferenceconsideredtherehasbeendeduction. Meta-levelabductionwasintroducedin[18]asamethodtodiscoverunknownrelations from incomplete networks. Given a network representing causal relations, called a causal network,missinglinksandnodesareabducedinthenetworktoaccountforobservations. Themainobjectivein[18]istoprovidealogicalfoundationandknowledgerepresentation forabducingrules,whichisanimportantabductiveprobleminILP.Itisnotablethatother abductive methods [49,3] need a predetermined set of candidate rules (called abducible rules or abducibles) and then select consistent combinations of abducibles to form expla- nations. In contrast, meta-level abduction does not need any such abducibles in advance. Meta-level abduction is implemented in SOLAR [44,45], an automated deduction system forconsequencefinding,usingafirst-orderrepresentationforalgebraicpropertiesofcausal- ityandafull-clausalformofnetworkinformationandconstraints.Meta-levelabductionby SOLARispowerfulenoughtoinfermissingrules,missingfacts,andunknowncausesin- volvingpredicateinvention[41]intheformofexistentiallyquantifiedhypotheses.Notethat predicateinventionhadbeenintensivelyinvestigatedintheinitialstageofILPresearchand hasrecentlybeenrevisited[42],sinceitshouldplayanimportantroleindiscovery. Meta-level abduction has been applied to discover physical skills in terms of hidden rulestoexplaingivenempiricalrulesincelloplayingexamplesin[18],andathoroughex- perimentalanalysiswithavarietyofprobleminstanceshasbeenpresentedin[45].However, allthoseexamplesofmeta-levelabductionin[18,45]containonlyonekindofcausaleffects, whicharepositive,anditwasleftopenhowtodealwithbothpositiveandnegativeeffects. 3 Then,weshallexamineapplicabilityofmeta-levelabductiontodealwithnetworksexpress- ingbothpositiveandnegativecausaleffects.Suchnetworksareoftenusedinbiology,where inhibitoryeffectsareessentialingeneregulatory,signalingandmetabolicnetworks. Inthispaper,wepresentaxiomsformeta-levelabductiontoproducebothpositiveand negative causal relations as well as newly invented nodes. We show two axiomatizations forsuchmeta-levelabduction.Oneisasetofalternatingaxiomswhichdefinerelationsof positiveandnegativecausaleffectsinadoubleinductivemanner.Thisaxiomsetreducesto theaxiomsforordinarymeta-levelabductiondefinedin[18]whenthereisnonegativecausal link. The other axiomatization is a variant of the alternating axioms, but prefers negative links to positive ones if both are connected to the same node. In this case, reasoning in causalnetworksbecomesnonmonotonic,andinvolvesdefaultassumptionsinabduction. Then,applicationstop53signalnetworks[50,36]arepresentedascasestudiesofour framework,inwhichmeta-levelabductionreproducestheoriesexplaininghowtumorsup- pressorswork[65]andhowDNAsynthesisstops[62].Analysisofsuchabstractsignaling networks, although simple, provides one of the most fundamental inference problems in computer-aidedscientificresearchincludingSystemsBiology:Givenanincompletecausal network, infer possible connections and functions of network entities to reach the target entitiesfromthesources.Meta-levelabductioninthispaperiscrucialinthistaskforthefol- lowingreasons.First,suggestionofpossibleadditionsinpriornetworksenablesscientiststo conducthypothesis-drivenexperimentswiththosefocusedcases.Ifasuggestedhypothesis isjustifiedthroughathroughsetofexperiments,thecorrespondingnewlinksand/ornodes are considered to be discovered. In network completion, however, the larger the network becomes,themoreabductiveinferencestepsarerequiredtogetahypothesisandthemore candidatehypothesesareinferred.Then,itishardforhumanscientiststoconsiderallpossi- bilitieswithoutlosinganyimportantones.Therefore,automationofhypothesisenumeration isveryimportant.Second,abductioninsuchnetworkdomainsofteninvolvesagoalrather thananobservation:Ahypothesisisinferredtoachievethegoalthathasnotbeenobserved yet.Forexample,indrugdesignandpharmacologyaswellastherapeuticresearch,theef- fectofintroductionofnewentitiesandlinkstoaknownnetworkisgoal-orientedandthe samehypothesescannotbeappliedtoothergoalsingeneral.Thisfeatureofgoal-oriented abductionalsoexistsincompletingcausalnetworksforimprovementofphysicaltechniques inmusicalperformance[18],inwhichspecificskillsarerequiredforrequestedtasks. Finally, scalability of meta-level abduction is analyzed through experiments of com- pletingnetworksrandomlygeneratedwithbothpositiveandnegativelinks.Byvaryingthe averagedegreeofnodestoedges,fromsparsetodensenetworksaregeneratedwithseveral sizes.Wewillseethatitisnoteasytogeneratealargeanddensenetworkbykeepingthe consistency, since there are more chances to become inconsistent in such networks. Then thegrowthrateofhypothesesinthesizeofnetworksratherdecreasesindensenetworks. Thisisanextendedversionofthepaper[17],andcontainsseveraltechnicaldetailssuch asanabductiveprocedurebasedonconsequencefinding,theoreticalcorrectnessforthepro- posedformalizationandtheirproofs,detailedanalysisofexperimentsonp53pathways,and scalabilityissues.Therestofthispaperisorganizedasfollows.Section2offerstheessen- tialofmeta-levelabductionanditsuseforruleabduction.Section3thenextendsmeta-level abductiontoallowfortwotypesofcausaleffects,inwhichpositiveandnegativerulesare called triggers and inhibitors, respectively, and investigate properties of two axiomatiza- tions. Section 4 presents two case studies of meta-level abduction applied to completion ofsub-networksinp53signalnetworks.Section5showsexperimentsoncausalnetworks, andanalyzesscalabilityofourmethodincompletingnetworks.Section6discussesrelated work,andSection7givesasummaryandfuturework. 4 2 Meta-levelAbduction Thissectionrevisitstheframeworkformeta-levelabduction[18],andprovidesthecorrect- nessofruleabduction. 2.1 CausalNetworks Wesupposeabackgroundtheoryrepresentedinanetworkstructurecalledacausalgraph oracausalnetwork.Acausalgraphisadirectedgraphrepresentingcausalrelations,which consistsofasetofnodesandasetof(directed)arcs(orlinks).1Eachnodeinacausalgraph representssomeevent,factorproposition.Adirectcausalrelationcorrespondstoadirected arc,andacausalchainisrepresentedbythereachabilitybetweentwonodes.Theinterpre- tationofa“cause”hereiskeptratherinformal,andjustrepresentstheconnectivity,which mayrefertoamathematical,physical,chemical,conceptual,epidemiological,structural,or statisticaldependency[48].Similarly,a“directcause”heresimplyrepresentstheadjacent connectivity,whileitseffectisdirectonlyrelativetoacertainlevelofabstraction. Wethenconsiderafirst-orderlanguagetoexpresscausalnetworks.Eachnodeisrep- resentedasapropositionora(ground)atominthelanguage.Whenthereisadirectcausal relation from a node s to a node g, we define that connected(g,s) is true as in (1). Note thatconnected(g,s)onlyshowsthatsisoneofpossiblecausesofg,andthustheexistence of another connected(g,t) (s (cid:2)= t) means that s and t are alternative causes for g. Here, expressionofcausalrelationsisdoneatthemetalevelusingthemeta-predicateconnected, whiletheobjectlevelreferstonodesinacausalnetwork.Anatomconnected(s,t)atthe metalevelcorrespondstoarule(s←t)attheobjectlevel.Thefactthatadirectcausallink cannotexistfromstogisrepresentedinan(integrity)constraintoftheform(2). ✛ g s connected(g,s) (1) ✛ g / s ¬connected(g,s) (2) Adirectcausalrelationfromswhichhasnondeterministiceffectsg andh,writtenas(g∨ h ← s)attheobjectlevel,isrepresentedinadisjunctionoftheform(3)atthemetalevel. Ontheotherhand,therelationthat“gisjointlycausedbysandt”,writtenas(g ← s∧t) at the object level, is expressed in a disjunction of the form (4) at the meta level, viz., (g←s∧t)≡(g←s)∨(g←t). g✐ ✛ OR s connected(g,s)∨connected(h,s) ✮ (3) h s ✛ ✮ g ✐AND connected(g,s)∨connected(g,t) (4) t There can be more than two atoms in a disjunction of the form (3) or (4). For example, (g←s∧t∧u)attheobjectlevelcanbeexpressedasconnected(g,s)∨connected(g,t)∨ connected(g,u).Acomplexrelationoftheform(g∨h←s∧t)thathasmorethanonenode inboththeleft-handandright-handsidesoftherulecanbedecomposedintotworelations, 1 Preciselyspeaking,ourcausalnetworksbringusmoreinformationthandirectedgraphs,sincenegation, disjunctiveeffectsandjointcausesareallrepresentedinanetwork. 5 (s-t←s∧t)and(g∨h←s-t),wheres-trepresentstheintermediatecomplex.Then,any directcausalrelationinacausalnetworkcanberepresentedbyatmosttwodisjunctionsof atomsoftheforms(3)and(4)atthemetalevel,usingintermediatecomplexes. Intheaboveexpression,(i)eachatomattheobjectlevelisrepresentedasatermatthe metalevel,and(ii)eachruleattheobjectlevelisrepresentedasafact oradisjunctionof factsatthemetalevel.Thepoint(ii)cannotonlyholdforrulesgivenintheaxioms,butcan alsobeappliedtoexpressinferredrulesatthemetalevel.Now,toexpressinferredrules,we introduceanothermeta-predicatecaused.Forobject-levelpropositionsg ands,wedefine thatcaused(g,s)istrueifthereisacausalchainfromstog.Then,thecausalchainsare generallydefinedtransitivelyintermsofconnectedastheaxiomswithvariables: caused(X,Y)←connected(X,Y). (5) caused(X,Y)←connected(X,Z)∧caused(Z,Y). (6) Here, the caused/2 relation is recursively defined with the connected/2 facts. The first- order expression with variables is thus used to represent that these axioms hold for all instances of them. Other algebraic properties as well as some particular constraints (e.g., ¬caused(a,b)) can also be defined if necessary. Variables in object-level expressions like g(T) and s(T) can be allowed in the meta-level expression like connected(g(T),s(T)), where the predicates g and s are treated as function symbols in the same way that Prolog canallowhigher-orderexpressions.Here,anexpressiong(T)canrepresentasetofnodes withthesamepropertygwithdifferentvaluesoftheargumentT suchastime. 2.2 RuleAbduction Reasoningaboutcausalnetworksisrealizedbydeductionandabductionfromthemeta-level expression of causal networks together with the axioms for causal relations including (5) and(6).Inrulededuction,wewilllaterproveinProposition1that,ifameta-levelexpression oftheformcaused(g,s)forsomefactsgandscanbederived,itmeansthattherule(g←s) canbederivedattheobjectlevel. Similarly, we can realize rule abduction in the meta-level representation as follows. Supposethatafactgissomehowcausedbyafacts,whichcanalsoberegardedasaninput- outputrelationthatanoutputgisobtainedgivenaninputs.Here,gandsarecalledagoal (fact)(oratarget(fact))andasource(fact),respectively.SettinganobservationO asthe causalchaincaused(g,s),wewanttoexplainwhyorhowOiscaused.Attheobjectlevel, O correspondstotherule(g ← s),whichcanbegivenaseitherarealobservation(called anempiricalrule)oravirtualgoaltobeachieved.Anabductivetaskisthentofindhidden rulesthatestablishaconnectionfromthesourcestothegoalgbyfillingthegapsincausal networks.AswewilllaterseeinTheorem1,suchanempiricalrulecanhavemorethanone antecedent.Forexample,anobject-levelobservation(g ← s∧t)canbeexpressedasthe meta-levelformula(caused(g,s)∨caused(g,t))inthesamewayas(4). Logically speaking, a background theory B consists of the meta-level expression of a causalnetworkNandtheaxiomsforcausalrelationsatthemetalevelcontaining(5)and(6). WhenBisincomplete,theremaybenopathbetweengandsinB,thatis,caused(g,s)can- notbederivedfromB.Then,abductioninfersanexplanation(orhypothesis)Hconsistingof missingrelations(links)andmissingfacts(nodes).Thisisrealizedbysettingtheabducibles Γ, the set of candidate literals to be assumed, as the atoms with the predicate connected: Γ = {connected( , )}. It is sometimes declared that there cannot exist any direct causal relationbetweenthesourceandthegoal,i.e.,¬connected(g,s). 6 Formally, given a set O of formulas, a set H of instances of elements of Γ is an (ab- ductive)explanationofO (withrespecttoB)ifB∪H |= O andB∪H isconsistent.A set of formulas can be interpreted as the conjunction of them. An explanation H of O is minimalifitdoesnotimplyanyexplanationofOthatisnotlogicallyequivalenttoH.Min- imalexplanationsinmeta-levelabductioncorrespondtominimaladditionsincausalgraphs, andarereasonableaccordingtotheprincipleofOccam’srazor.Forexample,supposethe observation O = caused(g,s)∧caused(h,s), that is, the multiple causal chains between twogoalfactsg,handthesourcefacts.ExamplesofminimalexplanationsofOcontaining twointermediatenodesareasfollows. ✛ g X✐ ∃X∃Y(connected(g,X)∧connected(h,Y) H1: s ✛ ✮ ∧connected(X,s)∧connected(Y,s)) h Y ✛ g X ♦ ∃X∃Y(connected(g,X)∧connected(X,Y) H2: s ✙ ∧connected(h,Y)∧connected(Y,s)) ✛ h Y H1andH2representdifferentconnectivities,andwemaywanttoenumeratedifferenttypes ofnetworkstructuresthataremissingintheoriginalcausalnetwork.Here,H1corresponds tothefourrules{(g←χ), (χ←s), (h←ψ), (ψ←s)},henceruleabduction,i.e.,abduc- tion of rules, is realized. Moreover, these hypotheses contain existentially quantified vari- ables,whereχandψ arenewlyinventedhere.Thosenewtermscanberegardedaseither some existing nodes or new unknown nodes. Since new formulas can be produced at the objectlevel,predicateinvention[41]ispartiallyrealizedinmeta-levelabduction.2 Ahypothesiswithajointcauseoftheform(4)canbeobtainedbytakingadisjunction ofexplanationsoftheformconnected(g, )orbyobtainingadisjunctiveanswer[53]foran observationcontainingafreevariableX oftheformcaused(g,X).Alternatively,thiscan berealizedbyaddingameta-levelaxiom: connected(X,Y)∨connected(X,Z)←jointly connected(X,Y,Z). (7) to the background theory B and the literals of the form jointly connected( , , ) to the abduciblesΓ.Causesconsistingofmorethantwojointlinkscanberepresentedinasimilar way.Atomsoftheformjointly connected( , , )togetherwithaxiom(7)canalsobeused to represent conjunctive causes of the form (4) in a causal network. That is, to express (g←s∧t)attheobjectlevel,theatomjointly connected(g,s,t)canbeusedinsteadofthe formula(connected(g,s)∨connected(g,t))atthemetalevel. Thesoundnessandcompletenessofruleabductioninmeta-levelabductioncanbede- rivedasfollows.3 Foranymeta-leveltheoryN suchthatthepredicateofanyformulaap- pearinginN isconnectedonly,letλ(N)betheobject-leveltheoryobtainedbyreplacing everyconnected(t1,t2)(t1 andt2 areterms)appearinginN withtheformula(t1 ← t2). Wefirstshowthecorrectnessofmeta-leveldeductioninthenextproposition. Proposition1 Suppose a meta-level theory N, which consists of disjunctions of facts of the form connected( , ). Let the background theory be B = N ∪{(5),(6)}. Then, B |= (caused(g,s1)∨···∨caused(g,sn))ifandonlyifλ(N)|=(g←s1∧···∧sn). 2 Predicateinventioninthisformcanalsoberegardedasarealizationofhiddenobjectinventiondiscussed byMuggletonin[7]. 3 The properties presented here are generalizations of preliminary results in [18, Section 3.3], which provedthecorrectnesswhentheobservationisafact,i.e.,asingleatom,oftheformcaused(g,s). 7 Proof Weprovethepropositionbyinductiononthedepthofprooftrees.4 Induction basis. It holds by the meaning of causal networks that caused(g,s) is de- rivedinaproofhavingdepth1iffconnected(g,s)∈B(by(5))iff(g ←s)∈λ(N).Then, (caused(g,s1)∨···∨caused(g,sn))isderivedinaproofhavingdepth1iff(connected(g,s1)∨ ···∨connected(g,sn)) ∈ N iff((g ← si)∨···∨(g ← sn)) ∈ λ(N)iffλ(N) |= (g ← s1∧···∧sn). Inductionhypothesis.Supposethatthepropositionholdsforanyformula(caused(g,s1)∨ ···∨caused(g,sn))derivedfromBinaprooftreehavingdepthdsuchthatd≤k. Inductionstep.Aformula(caused(g,s1)∨···∨caused(g,sn))isderivedinaprooftree havingdepthk+1iffB |=((connected(g,s1)∨∃s′1(connected(g,s′1)∧caused(s′1,s1)))∨ ···∨(connected(g,sn)∨∃s′n(connected(g,s′n)∧caused(s′n,sn))))(by(5)and(6))such thatcaused(s′j,sj)isderivedinaprooftreehavingdepthk forj = 1,...,niffλ(N) |= (((g←s1)∨∃s′1((g←s′1)∧(s′1 ←s1)))∨···∨((g←sn)∨∃s′n((g←s′n)∧(s′n ←s1)))) (bytheinductionhypothesis)iffλ(N) |= ((g ← s1)∨···∨(g ← sn))iffλ(N) |= (g ← s1∧···∧sn). ⊓⊔ NoteinProposition1thatwedonotneedtheλ-counterpartsofaxioms(5)and(6)in theobjectlevel.Thislogicreflectstheassumptionthattransitivityofcauseby←holdsfor achaininacausalnetwork.Nowwehavethecorrectnessofmeta-levelabduction. Theorem1 LetN andBbethesametheoriesasinProposition1.Supposetheobservation O = (caused(g,s1)∨···∨caused(g,sn)), and let Γ = {connected( , )}. Then, H is anabductiveexplanationofcaused(g,s)withrespecttoB andΓ ifandonlyifλ(H)isa hypothesissatisfyingthat λ(N)∪λ(H)|=(g←s1∧···∧sn), and (8) λ(N)∪λ(H)isconsistent. (9) Proof The equivalence between the relation that B ∪H |= O and the abductive deriva- tion(8)holdsbyProposition1.TheequivalencebetweentheconsistencyofB∪H andthe consistency(9)isobvious:B∪H isconsistentbecauseitcontainsnointegrityconstraint, andsoisλ(N)∪λ(H). ⊓⊔ 2.3 AbductionofRulesandFacts Besidestheuseinruleabduction,meta-levelabductioncanalsobeappliedtofactabduction [18],whichhasbeenfocusedonalmostexclusivelyinresearchofabductioninAI.5Abduc- tionoffactsattheobjectlevelcanbeformalizedasqueryansweringatthemetalevel.Given agoaloftheformcaused(g,X),abductionofcausesiscomputedbyanswersubstitutions tothevariableX.Tothisend,eachabducibleliteralaattheobjectlevelisassociatedwith the fact caused(a,a) at the meta level. That is, an abducible can hold by assuming itself. Equivalently,theaxiomforabduciblesisexpressedusingthemeta-predicateabdas: caused(X,X)←abd(X). 4 Forexample,SOLtableaux[44,45](Section2.4)canbeusedasprooftreesindeducingtargetconse- quences.SinceSOL(AR)iscompleteforconsequence-finding[13,45],foranyminimalclauseC derived fromaconsistentaxiomset,thereisanSOLtableauproducingCwithacertaindepth. 5 Inaphilosophicalwork[60],factabductionandruleabductionareclassifiedasfactualabductionand law-abduction,respectively.Ourmeta-levelabductionalsogivesarealizationof2ndorderexistentialabduc- tion,whichismostimportanttoproducenewtheorieswithnewconcepts[60]. 8 Then,eachabducibleaattheobjectlevelshouldbedeclaredasabd(a).Answerextraction forthequery ←caused(g,X)canberealizedbygivingthemeta-levelformulaoftheform: ans(X)←caused(g,X)∧abd(X). (10) Here,ansistheanswerpredicate[23],andthevariableXisusedtocollectonlyabducibles whichcauseg.Anintegrityconstraintthattwofactspandq cannotholdatthesametime (←p∧q)canberepresentedas: ←caused(p,X)∧caused(q,Y)∧abd(X)∧abd(Y). This makes any combination of abducibles that causes p and q incompatible. Such a set of incompatible abducibles is called a nogood. Finally, by combining rule abduction and factabductionintheformofconditionalqueryanswering[23],whichextractsanswersina querywithadditionalabducedconditions,meta-levelabductionenablesustoabduceboth rulesandfacts[18]. 2.4 ComputationbyConsequenceFinding Alltypesofmeta-levelinferencesinthissection,includinggenerationofexistentiallyquan- tifiedhypothesesinmeta-levelabductionaswellasconditionalqueryansweringtoabduce rulesandfacts,canberealizedbySOLAR[44,45].SOLARisaconsequence-findingsystem basedonSOLresolution[13]andtheconnectiontableaux. InSOLAR,thenotionofproductionfields[13]isusedtorepresentlanguagebiasesfor hypotheses.Aclauseisadisjunctionofliterals.Aproductionfield P isapair(cid:13)L,Cond(cid:14), whereLisasetofliteralsandCondisacertaincondition.IfCondistrue(empty),P is denotedas(cid:13)L(cid:14).AclauseC belongstoP = (cid:13)L,Cond(cid:14)ifeveryliteralinC isaninstance ofaliteralinLandC satisfiesCond.LetΣ beaclausaltheory.Thesetofconsequences ofΣbelongingtoP isdenotedasThP(Σ).ThecharacteristicclausesofΣwithrespectto P aredefinedasCarc(Σ,P) = µThP(Σ),whereµT denotesthesetofclausesinT that areminimalwithrespecttosubsumption.ThenewcharacteristicclausesofaclauseCwith respecttoΣandP aredefinedasNewcarc(Σ,C,P)=µ[ThP(Σ∪{C})\ThP(Σ)]. Let B be a clausal theory (background theory) and O a set of literals (observations). Then,asetH ofliteralsisobtainedasanabductiveexplanationofObyinverseentailment [13]: B∪{¬O}|=¬H, (11) whereboth¬O = (cid:2) ¬Land¬H = (cid:2) ¬Lareclauses(becauseOandH aresets L∈O L∈H ofliteralsandareinterpretedasconjunctionsofthem).Similarly,theconditionthatB∪H is consistent is equivalent to B (cid:2)|= ¬H. Hence, for any hypothesis H, its negated form ¬H is deductively obtained as a “new” consequence of B ∪{¬O} which is not an “old” consequenceofBalone.GiventheabduciblesΓ,anyliteralin¬Hisaninstanceofaliteral inΓ ={¬L|L∈Γ}.Hence,thesetofminimalexplanationsofOwithrespecttoBandΓ ischaracterizedas{H |¬H ∈Newcarc(B,¬O,(cid:13)Γ(cid:14))},whilethesetofminimalnogoods withrespecttoBandΓ is{H |¬H ∈Carc(B,(cid:13)Γ(cid:14))}. SOLAR is complete for finding (new) characteristic clauses with respect to a given production field. SOLAR can thus be used to implement a complete abductive system for finding and enumerating minimal explanations from full clausal theories containing non- Horn clauses. A simple way to compute Newcarc(Σ,C,P) in SOLAR is: (1) enumerate Carc(Σ,P),andthen(2)enumeratetheSOLtableaudeductionsfromΣ∪{C}withthetop clauseC[45]byremovingeachproducedclausesubsumedbysomeclauseinCarc(Σ,P). 9 3 ReasoningaboutPositiveandNegativeCausalEffects Sofar,meta-levelabductionhasbeendefinedforcausalnetworkswithoutexplicitlyargu- ing the meaning of causes. Indeed, links in a causal network have been of one kind, and connected(g,s) at the meta level, i.e., (g ← s) at the object level, just represents that g directlydependsonssomehow.However,mixingdifferenttypesofcausalitiesinonetype oflinksoftenmakesanalysisofactualcausescomplicated[48].Forexample,supposethat increaseoftheamountofpdecreasestheamountofqandthatincreaseofqcausesincrease of r. In this case, we cannot say that increase of p causes increase of r because q cannot mediate between p and r. For this problem, it is not appropriate to represent the causali- ties as (p → q → r) because transitivity does not hold. Instead, (inc(p) → dec(q)) and (inc(q)→inc(r))wouldbemoreprecisebutweneedmoreentitiesandrelationsbetween inc( )anddec( ).Inthissection,weconsideroneofthemostimportantproblemsofthis kind:networkswithtwotypesofcausalities,i.e.,positiveandnegativecausaleffects.With this regard, from now on we can understand that each arc of the form connected(g,s) in Section2onlyrepresentspositiveeffects. Weextendapplicabilityofmeta-levelabductiontodealwithnetworksexpressingboth positiveandnegativecausaleffects.Suchnetworksareseeninbiologicaldomains,where inhibitioneffectsnegativelyingeneregulatory,signalingandmetabolicpathways.Nowwe considertwotypesofdirectcausalrelations:triggered andinhibited.Fortwonodesgand t,therelationtriggered(g,t)representsapositivecausesuchthattisatriggerofg,written asg ←− tinacausalnetwork.Ontheotherhand,therelationinhibited(g,s)representsa negativecausesuchthatsisaninhibitorofg,writtenasg |—–sinacausalnetwork.6The meaningoftheselinkswillbegivenintwowaysinSections3.1and3.2. AsinSection2.1,negation,disjunctiveeffectsandconjunctivecausescanbedefinedfor triggeredandinhibited,cf.,(2),(3)and(4),andcomplexcausalrelationscanberepresented usingthosecombinationsandintermediatecomplexes.Forinstance,gisjointlytriggeredby t1andt2canbeexpressedastriggered(g,t1)∨triggered(g,t2). The notion of causal chains is also divided into two types: the positive one (written promoted)andthenegativeone(writtensuppressed),respectivelycorrespondingtotriggered andinhibited.Nowourtaskistodesigntheaxiomsforthesetwometa-predicates. 3.1 AlternatingAxiomsforCausality Supposefirstthatthereisnoinhibitorinacausalnetwork,thatis,alllinksarepositive.In thiscase,theaxiomsforpromoted shouldcoincidewith(5)and(6): promoted(X,Y)←triggered(X,Y). (12) promoted(X,Y)←triggered(X,Z)∧promoted(Z,Y). (13) Next,letusinterpretthemeaningofaninhibitorasatoggleswitchofsignalsflowedinthe inhibitor,justasaninverterinalogiccircuit[62].Then,inthepresenceofinhibitors,we needonemoreaxiom(14),whichblocksanadjacentinhibitorforXinordertopromoteX: promoted(X,Y)←inhibited(X,Z)∧suppressed(Z,Y). (14) 6 Atriggerandaninhibitorareoftencalledanactivatorandarepressor,respectively.
Description: