ebook img

Competitive Assessment of Aerospace Systems using - SMARTech PDF

284 Pages·2006·10.81 MB·English
by  
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Competitive Assessment of Aerospace Systems using - SMARTech

Competitive Assessment of Aerospace Systems using System Dynamics A Thesis Presented to The Academic Faculty by Jens Holger Pfaender In Partial Fulfillment of the Requirements for the Degree Doctor of Philosophy School of Aerospace Engineering Georgia Institute of Technology December 2006 Copyright (cid:13)c 2006 by Jens Holger Pfaender Competitive Assessment of Aerospace Systems using System Dynamics Approved by: Prof. Dimitri Mavris Dr. Peter Hollingsworth Committee Chair School of Aerospace Engineering School of Aerospace Engineering Georgia Institute of Technology Georgia Institute of Technology Dr. Fayette Collier Prof. Daniel Schrage Langley Aeronautical Research Center School of Aerospace Engineering NASA Georgia Institute of Technology Dr. Jim McMichael Aerospace, Transportation and Advanced Systems Laboratory Georgia Tech Research Institute Date Approved: 17 November 2006 To mom and dad, for your love, patience, and support. Nunc bibendum est! iii ACKNOWLEDGEMENTS I would like to extend thanks to the many individuals who have helped me through this endeavor. I especially want to thank Prof. Dimitri Mavris, my advisor, for giving me years of support and encouragement and for introducing me to a new way about thinking about aerospace engineering in general. Dr. Daniel Schrage who brought his considerable experience in aerospace systems design to my reading committee and I feel privileged to have had the opportunity to get a different perspective on things from him. I further want to thank Dr. Jim McMichael for his perspective and curiosity in the field of advanced design methods and putting up with my brief set of lectures in Advanced Design Methods III. Dr. Peter Hollingsworth provided me with much needed input on details about aircraft and engine calibration. He also provided me with much needed comments about the method in general. Last but not least, I would like to thank Dr. Fayette Collier for providing guidance on NASA Langley’s Aerospace Systems Analysis perspective on important challenges for systems design and analysis, which provided some of the basis of this thesis. ASDL at Georgia Tech has provided me with a number of contacts, experiences, and most importantly good friends. I would also like to thanks Dr. Michelle Kirby for providing me insights into FLOPS’ quirks and peculiarities. Similarly, I also want to thank Dr. Elena Garcia for providing me with insight into the inner workings of ALCCA. In general, everybody that provided me with comments and corrections in the last months also deserves a round of thanks. I also want to thank Simon Briceno and Ismael Fernandez for their sharing of ideas and thoughts about each of our specialty areas and what they mean. Finally, Carl Johnson provided me with insights and tips into neural networks. iv I will not attempt to list everybody that I got to know at Georgia Tech and in Atlanta, doing so would take up a lot of space. My time here has been enjoyable and fun. I’m looking forward to spending more time with you. My family and friends in Germany that have given their encouragement and love all my life no matter where my endeavors took me. I could not have make it without you understanding and support this long way away from home. Mom, Alice, Dad, even if you are not with us anymore...thanks. Thank you all — without you, I could accomplish nothing. v TABLE OF CONTENTS DEDICATION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iii ACKNOWLEDGEMENTS . . . . . . . . . . . . . . . . . . . . . . . . . . iv LIST OF TABLES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . x LIST OF FIGURES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xi LIST OF SYMBOLS OR ABBREVIATIONS . . . . . . . . . . . . . . xiv SUMMARY . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xvi 1 INTRODUCTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 1.1.1 Technological Factors . . . . . . . . . . . . . . . . . . . . . . 3 1.1.2 Economical Factors . . . . . . . . . . . . . . . . . . . . . . . 6 1.1.3 Regulatory Factors . . . . . . . . . . . . . . . . . . . . . . . 9 1.1.4 Perceived Factors . . . . . . . . . . . . . . . . . . . . . . . . 12 1.1.5 Interconnectedness . . . . . . . . . . . . . . . . . . . . . . . . 14 2 BACKGROUND . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 2.1 Modern System Design Methods . . . . . . . . . . . . . . . . . . . . 15 2.1.1 Integrated Product and Process Development . . . . . . . . . 15 2.1.2 Robust Design Simulation . . . . . . . . . . . . . . . . . . . 16 2.1.3 Virtual Stochastic Life-Cycle Design Environment . . . . . . 18 2.1.4 Design Space Exploration . . . . . . . . . . . . . . . . . . . . 18 2.1.5 Surrogate modeling . . . . . . . . . . . . . . . . . . . . . . . 21 2.1.6 Technology Identification Evaluation and Selection (TIES) . 26 2.1.7 The Unified Tradeoff Environment . . . . . . . . . . . . . . . 27 2.2 Aircraft Market . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 2.2.1 Market Features . . . . . . . . . . . . . . . . . . . . . . . . . 30 2.2.2 Market Models . . . . . . . . . . . . . . . . . . . . . . . . . . 30 vi 2.3 Complexity Science . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 2.4 Foundation of System Dynamics . . . . . . . . . . . . . . . . . . . . 37 2.4.1 Industrial Dynamics . . . . . . . . . . . . . . . . . . . . . . . 37 2.4.2 Application to Social Systems . . . . . . . . . . . . . . . . . 40 2.4.3 Mathematical Foundation of System Dynamics . . . . . . . . 44 2.4.4 Current State of the Art . . . . . . . . . . . . . . . . . . . . 48 2.4.5 Existing Aerospace Applications . . . . . . . . . . . . . . . . 56 3 RESEARCH QUESTIONS & HYPOTHESES . . . . . . . . . . . . 60 3.1 Research Questions . . . . . . . . . . . . . . . . . . . . . . . . . . . 60 3.2 Hypotheses . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60 3.3 Explanation of Hypotheses . . . . . . . . . . . . . . . . . . . . . . . 61 3.3.1 Hypothesis 1: Engineering Analysis Integration with System Dynamics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61 3.3.2 Hypothesis 2: Computational Feasibility . . . . . . . . . . . . 62 3.3.3 Hypothesis 3: Model Calibration . . . . . . . . . . . . . . . . 63 3.3.4 Hypothesis 4: Solution Space . . . . . . . . . . . . . . . . . . 63 3.3.5 Hypothesis 5: Solution Space Exploration . . . . . . . . . . . 64 3.3.6 Hypothesis 6: Probability Corridors . . . . . . . . . . . . . . 64 3.3.7 Hypothesis 7: Rapid Changes in External Drivers . . . . . . 64 4 SOLUTION APPROACHES TO FORMULATING A MARKET MODEL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66 4.1 The Airline Decision Making Process . . . . . . . . . . . . . . . . . 66 4.1.1 Is there a Method to the Chaos? . . . . . . . . . . . . . . . . 67 4.1.2 Factors Affecting Purchasing Decisions . . . . . . . . . . . . 68 4.1.3 Fundamental Program Characteristics . . . . . . . . . . . . . 69 4.1.4 Goals for a Model . . . . . . . . . . . . . . . . . . . . . . . . 72 4.2 Competition Model . . . . . . . . . . . . . . . . . . . . . . . . . . . 72 4.2.1 Polya Process Models . . . . . . . . . . . . . . . . . . . . . . 72 4.2.2 Measures of Merit . . . . . . . . . . . . . . . . . . . . . . . . 80 vii 5 IMPLEMENTATION OF AN INTEGRATED MODEL. . . . . . 83 5.1 Feasibility of Integration . . . . . . . . . . . . . . . . . . . . . . . . 83 5.2 Feasibility of an Analytical Integration . . . . . . . . . . . . . . . . 83 5.2.1 General Comments on the Feasibility of an Analytical Inte- gration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84 5.2.2 Formulation of an Analytical Integration . . . . . . . . . . . 87 5.2.3 Implications . . . . . . . . . . . . . . . . . . . . . . . . . . . 90 5.3 Feasibility of a Numerical Integration . . . . . . . . . . . . . . . . . 91 5.3.1 General Comments on the Feasibility of a Numerical Solution 91 5.3.2 Formulation of a Numerical Integration . . . . . . . . . . . . 93 5.3.3 Code Execution . . . . . . . . . . . . . . . . . . . . . . . . . 96 5.3.4 Surrogate Modeling . . . . . . . . . . . . . . . . . . . . . . . 97 5.4 Analysis Code Integration . . . . . . . . . . . . . . . . . . . . . . . . 98 5.4.1 Direct Integration . . . . . . . . . . . . . . . . . . . . . . . . 102 5.4.2 Indirect Integration . . . . . . . . . . . . . . . . . . . . . . . 103 5.5 Competition Space Exploration . . . . . . . . . . . . . . . . . . . . . 104 5.6 Probability Corridors . . . . . . . . . . . . . . . . . . . . . . . . . . 109 5.7 Process Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111 6 VALIDATION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118 6.1 Demonstration of Design Integration . . . . . . . . . . . . . . . . . . 118 6.2 Visualisation of Model Output . . . . . . . . . . . . . . . . . . . . . 126 6.3 Example Application . . . . . . . . . . . . . . . . . . . . . . . . . . 128 6.3.1 Wide Body Aircraft Market . . . . . . . . . . . . . . . . . . . 128 6.3.2 Aircraft Definition . . . . . . . . . . . . . . . . . . . . . . . . 135 6.3.3 Calibration . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135 6.3.4 Creation of Surrogate Models . . . . . . . . . . . . . . . . . . 142 6.3.5 Market Model . . . . . . . . . . . . . . . . . . . . . . . . . . 147 6.3.6 Extended Unified Trade-off Environment . . . . . . . . . . . 153 viii 7 MARKET VIABILITY BASED DESIGN . . . . . . . . . . . . . . 169 7.1 Inverse Design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 169 7.2 Market Exploration . . . . . . . . . . . . . . . . . . . . . . . . . . . 173 7.2.1 Market Definition . . . . . . . . . . . . . . . . . . . . . . . . 173 7.2.2 Viable Aircraft . . . . . . . . . . . . . . . . . . . . . . . . . . 185 7.2.3 Insights . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 185 8 CONCLUSIONS AND RECOMMENDATIONS . . . . . . . . . . 187 8.1 Contributions to Aerospace Systems Design . . . . . . . . . . . . . . 187 8.2 Lessons and Potential Improvements . . . . . . . . . . . . . . . . . . 191 8.3 New Research Paths . . . . . . . . . . . . . . . . . . . . . . . . . . . 193 APPENDIX A — AIRCRAFT BASELINES . . . . . . . . . . . . . . 195 APPENDIX B — SURROGATE MODEL FIT RESULTS . . . . . 212 APPENDIX C — SOURCE CODE . . . . . . . . . . . . . . . . . . . 220 REFERENCES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 256 VITA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 267 ix LIST OF TABLES Table 1 List of Aircraft type classifications . . . . . . . . . . . . . . . . . . 33 Table 2 List of Total Market Values . . . . . . . . . . . . . . . . . . . . . . 131 Table 3 Aircraft Calibration Parameters . . . . . . . . . . . . . . . . . . . . 136 Table 4 List of Economic Calibration Variables . . . . . . . . . . . . . . . . 138 Table 5 Economic Calibration Variables for the 767-400ER . . . . . . . . . 139 Table 6 List of Surrogate Model Variables . . . . . . . . . . . . . . . . . . . 143 Table 7 List of Market Model Calibration Variables . . . . . . . . . . . . . 151 Table 8 List of Market Model Calibration Results . . . . . . . . . . . . . . 152 Table 9 Goodness of Market Model Fit . . . . . . . . . . . . . . . . . . . . 152 x

Description:
Competitive Assessment of Aerospace Systems using System Dynamics. A Thesis. Presented to. The Academic Faculty by. Jens Holger Pfaender. In Partial
See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.