Marco Fontana · Sophie Frisch Sarah Glaz Editors Commutative Algebra Recent Advances in Commutative Rings, Integer-Valued Polynomials, and Polynomial Functions Commutative Algebra Marco Fontana • Sophie Frisch (cid:129) Sarah Glaz Editors Commutative Algebra Recent Advances in Commutative Rings, Integer-Valued Polynomials, and Polynomial Functions 123 Editors MarcoFontana SophieFrisch DipartimentodiMatematica MathematicsDepartment UniversitàdegliStudiRomaTre GrazUniversityofTechnology Roma,Italy Graz,Austria SarahGlaz DepartmentofMathematics UniversityofConnecticut Storrs,CT,USA ISBN978-1-4939-0924-7 ISBN978-1-4939-0925-4(eBook) DOI10.1007/978-1-4939-0925-4 SpringerNewYorkHeidelbergDordrechtLondon LibraryofCongressControlNumber:2014943239 Mathematics Subject Classification (2010): 13-06, 13Axx, 13Bxx, 13Cxx, 13Dxx, 13Exx, 13Fxx, 13Gxx,13Hxx,13Jxx ©SpringerScience+BusinessMediaNewYork2014 Thisworkissubjecttocopyright.AllrightsarereservedbythePublisher,whetherthewholeorpartof thematerialisconcerned,specificallytherightsoftranslation,reprinting,reuseofillustrations,recitation, broadcasting,reproductiononmicrofilmsorinanyotherphysicalway,andtransmissionorinformation storageandretrieval,electronicadaptation,computersoftware,orbysimilarordissimilarmethodology nowknownorhereafterdeveloped.Exemptedfromthislegalreservationarebriefexcerptsinconnection with reviews or scholarly analysis or material supplied specifically for the purpose of being entered and executed on a computer system, for exclusive use by the purchaser of the work. Duplication of this publication or parts thereof is permitted only under the provisions of the Copyright Law of the Publisher’slocation,initscurrentversion,andpermissionforusemustalwaysbeobtainedfromSpringer. PermissionsforusemaybeobtainedthroughRightsLinkattheCopyrightClearanceCenter.Violations areliabletoprosecutionundertherespectiveCopyrightLaw. Theuseofgeneraldescriptivenames,registerednames,trademarks,servicemarks,etc.inthispublication doesnotimply,evenintheabsenceofaspecificstatement,thatsuchnamesareexemptfromtherelevant protectivelawsandregulationsandthereforefreeforgeneraluse. While the advice and information in this book are believed to be true and accurate at the date of publication,neithertheauthorsnortheeditorsnorthepublishercanacceptanylegalresponsibilityfor anyerrorsoromissionsthatmaybemade.Thepublishermakesnowarranty,expressorimplied,with respecttothematerialcontainedherein. Printedonacid-freepaper SpringerispartofSpringerScience+BusinessMedia(www.springer.com) Preface Thisvolumeismainlytheoutcomeofaseriesofmini-coursesandaconferenceon Commutativerings,integer-valuedpolynomialsandpolynomialfunctionsatTech- nische Universität Graz, Austria, December 16–18 (mini-courses) and December 19–22(conference),2012.Italso containsa smallcollectionof invitedarticles by some of the leading experts in the area, carefully selected for the impact of their researchonthemajorthemesoftheconference. Theaimofthismeetingwastopresentrecentprogressintheareaofcommutative algebra, with primary emphasis on commutative ring theory and integer-valued polynomialsalongwithconnectionstoalgebraicnumbertheory,algebraicgeometry and homological algebra. The wide range of topics is reflected in the table of contentsofthisvolume.Someoftheinvitedspeakerswhogavemini-courseshave suppliedsurveysofthestateoftheartinnewlyemergingsubfields. At the conference, we had the good fortune to see that our field attracts excellentyoungmathematicians(whosubmittedgoodwork,bothindividuallyand incollaborationwiththeoldguard)andthenotsogoodfortunetoseethatnoneof theyoungresearchershavepermanentjobs.Maythefirsttrendremaininfullforce andthesecondoneberemediedinthenearfuture! Among the people and organizations who helped to make the conference and this volume of proceedings possible, our special thanks go to the departmental secretary Hermine Panzenböck and the doctoral student Roswitha Rissner, who, between the two of them, shared all the hard work of organizing,from designing the conference poster and implementing the website to applications for subsidies andthepainstakingworkofbookkeepingandbalancingtheaccounts.Withouttheir efforts,theconferencewouldnothavetakenplaceandthisvolumewouldnothave seenthelightofday. Wethankthesponsorsoftheconference:theprovinceofStyria,whosesubsidy allowedustosponsorthetravelexpensesofsomegraduatestudentsandconference participantsfromlow-incomecountries,andthefacultyofmathematicsandphysics of Technische Universität Graz and the joint graduate school of natural sciences “NAWIGraz”ofTechnischeUniversitätGrazandKarl-FranzensUniversitätGraz, v vi Preface who together paid the travel expenses of all the invited speakers. Last, but not least,wethanktheeditorialstaffofSpringer,inparticularElizabethLoew,fortheir cooperation,hardworkandassistancewiththepresentvolume. Rome,Italy MarcoFontana Graz,Austria SophieFrisch Storrs,Connecticut,USA SarahGlaz December2013 Contents WeakGlobalDimensionofPrüfer-LikeRings................................ 1 KhalidAdarbehandSalah-EddineKabbaj Quasi-completeSemilocalRingsandModules ............................... 25 DanielD.Anderson OntheTotalGraphofaRingandItsRelatedGraphs:ASurvey.......... 39 AymanBadawi Prime Ideals in PolynomialandPower Series Rings over NoetherianDomains............................................................. 55 ElaCelikbas,ChristinaEubanks-Turner,andSylviaWiegand Integer-ValuedPolynomials:LookingforRegularBases(ASurvey)...... 83 Jean-LucChabert OnBooleanSubringsofRings.................................................. 113 IvanChajdaandGüntherEigenthaler OnaNewClassofIntegralDomainswiththePortableProperty.......... 119 DavidE.Dobbs,GabrielPicavet,andMartinePicavet-L’Hermitte TheProbabilityThatInt (D)IsFree .......................................... 133 n JesseElliott Some Closure Operations in Zariski-Riemann Spaces ofValuationDomains:ASurvey ............................................... 153 CarmeloAntonioFinocchiaro,MarcoFontana,andK.AlanLoper TenProblemsonStabilityofDomains......................................... 175 StefaniaGabelli TheDevelopmentofNon-NoetherianGradeandItsApplications ......... 195 LiviaHummel vii viii Contents Stable Homotopy Theory, Formal Group Laws, andInteger-ValuedPolynomials................................................ 213 KeithJohnson HowtoConstructHugeChainsofPrimeIdealsinPowerSeriesRings ... 225 ByungGyunKangandPhanThanhToan LocalizingGlobalPropertiestoIndividualMaximalIdeals ................ 239 ThomasG.Lucas PrimeIdealsThatSatisfyHensel’sLemma................................... 255 StephenMcAdam FinitelyStableRings............................................................. 269 BruceOlberding IntegralClosureofRingsofInteger-ValuedPolynomialsonAlgebras .... 293 GiulioPeruginelliandNicholasJ.Werner OnMonoidsandDomainsWhoseMonadicSubmonoidsAreKrull....... 307 AndreasReinhart IntegralClosure.................................................................. 331 IrenaSwanson OpenProblemsinCommutativeRingTheory................................ 353 Paul-JeanCahen,MarcoFontana,SophieFrisch,andSarahGlaz Weak Global Dimension of Prüfer-Like Rings KhalidAdarbehandSalah-EddineKabbaj Abstract In 1969, Osofsky proved that a chained ring (i.e., local arithmetical ring) with zero divisors has infinite weak global dimension; that is, the weak globaldimensionofanarithmeticalringis 0,1,or1.In2007,BazzoniandGlaz studied the homological aspects of Prüfer-like rings, with a focus on Gaussian rings. They proved that Osofsky’s aforementioned result is valid in the context of coherent Gaussian rings (and, more generally, in coherent Prüfer rings). They closedtheirpaperwithaconjecturesustainingthat“theweakglobaldimensionof aGaussianringis0,1,or1.”In2010,theauthorsofBakkarietal.(J.PureAppl. Algebra214:53–60,2010)providedanexampleofaGaussianringwhichisneither arithmeticalnor coherentand has an infinite weak global dimension.In 2011,the authorsofAbuihlailetal.(J.PureAppl.Algebra215:2504–2511,2011)introduced and investigated the new class of fqp-ringswhich stands strictly between the two classes of arithmetical rings and Gaussian rings. Then, they proved the Bazzoni- Glazconjectureforfqp-rings.Thispapersurveysafewrecentworksintheliterature ontheweakglobaldimensionofPrüfer-likeringsmakingthistopicaccessibleand appealing to a broad audience. As a prelude to this, the first section of this paper providesfulldetailsforOsofsky’sproofofthe existenceofa modulewithinfinite projectivedimensiononachainedring.Numerousexamples—arisingastrivialring extensions—areprovidedtoillustratetheconceptsandresultsinvolvedinthispaper. Keywords Weak global dimension (cid:129) Arithmetical ring (cid:129) fqp-ring (cid:129) Gaussian ring (cid:129) Prüfer ring (cid:129) Semihereditary ring (cid:129) Quasi-projective module (cid:129) Trivial extension MathematicsSubjectClassification 13F05,13B05,13C13,16D40,16B50 K.Adarbeh(cid:129)S.-E.Kabbaj((cid:2)) DepartmentofMathematicsandStatistics,KFUPM,Dhahran31261,SaudiArabia e-mail:[email protected];[email protected] M.Fontanaetal.(eds.),CommutativeAlgebra:RecentAdvancesinCommutativeRings, 1 Integer-ValuedPolynomials,andPolynomialFunctions,DOI10.1007/978-1-4939-0925-4__1, ©SpringerScience+BusinessMediaNewYork2014
Description: