COMBINATORS A CENTENNIAL VIEW STEPHEN WOLFRAM COMBINATORS A CENTENNIAL VIEW STEPHEN WOLFRAM Combinators: A Centennial View Copyright © 2021 Stephen Wolfram, LLC W olfram Media, Inc. | wolfram-media.com ISBN-13: 978-1-57955-043-1 (hardback) ISBN-13: 978-1-57955-044-8 (ebook) Mathematics/Science Cataloging-in-publication data available at: Library of Congress Cataloging-in-Publication Data Names: Wolfram, Stephen, author. Title: Combinators: a centennial view / Stephen Wolfram. Description: Champaign: Wolfram Media, Inc., [2021] | Includes bibliographical references and index. Identifiers: LCCN 2021004419 (print) | LCCN 2021004420 (ebook) | ISBN 9781579550431 (hardback) | ISBN 9781579550448 (ebook) Subjects: LCSH: Combinatorial analysis. | Computer science – Mathematics. | Wolfram Language (computer program language) | AMS: Combinatorics – Historical. | Combinatorics – Explicit machine computation and programs (not the theory of computation or programming). | Computer science – Discrete mathematics in relation to computer science – Combinatorics in computer science. | Computer science – Discrete mathematics in relation to computer science – Graph theory (including graph drawing) in computer science. Classification: LCC QA164.W65 2021 (print) | LCC QA164 (ebook) | DDC 511/.60285–dc23 LC record available at https://lccn.loc.gov/2021004419 LC ebook record available at https://lccn.loc.gov/2021004420 For information about permission to reproduce selections from this book, contact [email protected]. Sources for photos and archival materials that are not from the author’s collection or in the public domain: p. 167: Georg Olms Hildesheim; p. 168: Edizioni Cremonese; pp. 171, 173, 175–6, 178–9, 213, 215, 241–2, 244–7: Mathematische Annalen, Springer Nature; p. 184: Monatshefte für Mathematik Physik, Springer Nature; pp. 186–7: Annals of Mathematics, Johns Hopkins University Press; pp. 187, 268–71: Am. J. of Mathematics, Johns Hopkins University Press; p. 188: J. of Symbolic Logic, Cambridge University Press; p. 193: Communications of the ACM, Cambridge University Press; p. 195: Raymond Smullyan, Oxford U. Press; pp. 196, 272: North-Holland Pub. Co. (Cambridge University Press); pp. 213, 231–5, 240, 243, 254: Göttingen State and University Library; p. 217: Odessa State Archive, Ukraine; pp. 218, 264, 282: State Archives of Dnepropetrovsk Region, Ukraine; p. 219: ©Map Data 2015 Google; pp. 220–1: Dneiper City Encyclopedia, Ukraine; pp. 221–7: Odessa State Archive, Ukraine; p. 230: Cem Bozşahin, Stadtarchiv Göttingen; p. 238: Stadtarchiv Göttingen; p. 239: Stadtarchiv Göttingen (modified); p. 240: Goettinger-Tageblatt.de; pp. 248–252: Dr. Ludwig Bernays and ETH Zurich, Bernays Archive; p. 262: Deutsches Biographisches Archiv; p. 262: Staatsarchiv des Kantons Bern; p. 263: Semih Baskan, Ankara University; p. 265: Kim Heffernan; pp. 265–8: Haskell P. Curry papers, Pennsylvania State University; p. 283: Elena Zavoiskaia and Central State Archive of Moscow; p. 283: gwar.mil.ru; p. 284: pamyat-naroda.ru; p. 285: Daily Express/Reach Licensing.; p. 286: Osprey Publishing; pp. 287–8: world-war.ru/zabvenie-tradicii-baxrushinyx Typeset with Wolfram Notebooks: wolfram.com/notebooks Printed by Friesens, Manitoba, Canada. Acid-free paper. First edition. First printing. 00a-hbbook-copyright.pdf 1 4/30/21 8:36 AM CONTENTS Preface vii • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • Combinators: A Centennial View • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • 3 Ultimate Symbolic Abstraction 3 • Computing with Combinators 6 • A Hundred Years Later... 12 • Combinators in the Wild: Some Zoology 17 • Visualizing Combinators 34 • Updating Schemes and Multiway Systems 54 • The Question of Evaluation Order 72 • The World of the S Combinator 87 • Causal Graphs and the Physicalization of Combinators 102 • Combinator Expressions as Dynamical Systems 120 • Equality and Theorem Proving for Combinators 125 • Lemmas and the Structure of Combinator Space 133 • Empirical Computation Theory with Combinators 145 • The Future of Combinators 157 • Historical & Other Notes 159 Combinators and the Story of Computation 165 • • • • • • • • • • • • • • • • • • • • • • • • • The Abstract Representation of Things 165 • What Is Mathematics—and Logic—Made Of? 167 • Combinators Arrive 171 • What Is Their Mathematics? 181 • Gödel’s Theorem and Computability 183 • Lambda Calculus 186 • Practical Computation 191 • Combinators in Culture 195 • Designing Symbolic Language 198 • Combinators in the Computational Universe 203 • Combinators All the Way Down? 208 Where Did Combinators Come From? Hunting the Story of Moses Schönfinkel • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • 213 December 7, 1920 213 • Who Was Moses Schönfinkel? 215 • The Beginning of the Story 217 • Going to College in Odessa 222 • Göttingen, Center of the Mathematical Universe 228 • Problems Are Brewing 234 • The 1924 Paper 241 • The “1927” Paper 247 • To Moscow and Beyond… 257 • Other Schönfinkels... 262 • Haskell Curry 265 • Schönfinkel Rediscovered 274 • What Should We Make of Schönfinkel? 275 A Little Closer to Finding What Became of Moses Schönfinkel, Inventor of Combinators • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • 281 1920, 2020 and a $20,000 Prize: Announcing the S Combinator Challenge • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • 297 Hiding in Plain Sight for a Century? 297 • The Basic Setup 300 • The Operation of the S Combinator Challenge 303 Excerpts from A New Kind of Science (2002)• • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • 307 Section 10: Symbolic Systems 307 • Notes 310 • Section 12: Universality in Turing Machines and Other Systems 315 • Notes 319 A Bibliography of Combinators • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • 325 Foundational Documents 325 • Books 325 • Surveys & Summaries 326 • Combinators as Symbolic Expressions 327 • Combinators as Mathematical Constructs 334 • Combinator Computation 341 • Extensions & Applications 350 • Confusing Issues 352 Index • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • 357 Preface Iʼdhaditinmycalendarformorethantwentyyears:December7,2020—thecente‐ naryofcombinators.Buthowshoulditbecelebrated?Iʼdfirstlearnedabout combinatorsmorethanfortyyearsago—andafewtimesIʼdexplicitlyusedthem. Butthey—andtheirorigins—hadalwaysmaintainedacertainairofmysteryforme. SoafewmonthsagoIdecidedthatthewayIwantedtocelebratetheircentenary wasfinallytodomybesttounderstandhowcombinatorswork,andhowthey cametobeinvented.Thisbookistheresult. AndontheactualdayofDecember7,2020—exactlyatthehourahundredyears a�erMosesSchönfinkelgavehistalkaboutcombinators—Iwasverypleasedto beabletohostanonlineeventwhichbroughttogetheralargefractionofthe livingworldexpertsoncombinators. Combinators—andtheirinvention—areataleofbothtriumphandtragedy.They definedavisionofcomputationthathasaprofoundandtimelessabstractelegance. Butevenacenturylatertheycontinuetoseemexoticandabstruse—andsomehow fundamentallyunsuitableforhumanconsumption.Inadifferentversionofhistory thecomputerrevolutionmighthavebeenbasedonmolecularratherthanelec‐ troniccomputing,andcombinatorsmighthavebeenatthecenterofit.Butasitis, ourcomputersaremadeoflogicgates,andtherearenʼtanycombinatorsinsight. Butisthatreallytrue?AsIworkedoncombinatorsinpreparingfortheircente‐ nary,Irealizedthatcombinatorshavehadamuchmoreprofoundeffectonat leastmythinkingaboutcomputationthanIʼdeverimagined.Forinthemorethan fortyyearsthatIʼveworkedtowardsthefull‐scalecomputationallanguagethatis ourmodernWolframLanguage,thefoundationofitallhasbeentheideaof representingeverythingintermsoftransformationsofsymbolicexpressions.And Inowrealizethatultimatelythatidea—andeverythingthathasflowedfromit— canbetracedbacktocombinators,andtheirintroductiononDecember7,1920. vii Page-vii from 00-CCP-hbbook-Preface.pdf 1 4/30/21 12:04 PM COMBINATORS:ACentennialView Combinatorsforeshadowedanotherbigpartofmylifetoo.Intryingtogener‐ alizetheconceptofmathematicalmodels,Ibeganmanyyearsagotoexplore thecomputationaluniverseofsimpleprograms—anddiscoveredthateven extremelysimpleprogramscangenerateimmenselycomplexbehavior,ofthe kindwesee,forexampleinnature.MostoftheprogramsIʼvestudiedoverthe yearsarenʼtspecificallylikecombinators.Butinpreparingforthecentenaryof combinatorsIdecidedtoapplythemethodsIʼvehonedinexploringthecompu‐ tationaluniversetocombinators—anddiscoveredthatmanyofthestrongest phenomenaIʼvefoundinthecomputationaluniversehavebeenlurkinglargely unnoticedincombinatorsforacentury. WhenIfirstputthecombinatorcentenaryonmycalendartwentyyearsago—even thoughIdidnʼtconnectthemasmuchwithcombinatorsasIdonow—Ialready knewaboutsymbolicexpressionsandcomputationallanguage,andaboutwhat happensinthecomputationaluniverseofsimpleprograms.But—thoughIhad somepremonitionsmorethantwentyyearsago—itʼsonlybeeninthelastyearand ahalfthatIʼvecometorealizewithincreasingcertaintythatourphysicaluniverse isfundamentallycomputational. Itʼsgivenmeanewwaytothinkaboutcomputation,deeplyinterwovennot onlywithphysicsbutalsowithareaslikemetamathematics.Anditʼsmademe seethatcombinators—withsomeoftheirhard‐to‐understandfeatures— fundamentallyreflect someofhowcomputationrelatestophysicsandour experienceofthephysicalworld. Iʼmsogladtohavehadtheimpetusfromtheircentenarytogettoknowcombina‐ torsalittlebetter,andtobeabletosharewhatIʼvelearnedinthisbook.Ithink thereʼslittledoubtthatthegeneraldevelopmentofcomputationhasbeenthe greatestintellectualachievementofthepastcentury.Butinthatendeavor, combinatorshavebeentheroadnottaken.IhopeherethatIʼmabletoexplorea littleoftheremarkableworldofcombinators,andwhatmightlieaheadwith themnowthatwebegintoseewhatʼspossible. April30,2021 viii 00-CCP-hbbook-Preface.pdf 2 4/29/21 10:52 PM Combinators: A CentennialView Ultimate Symbolic Abstraction BeforeTuringmachines,beforelambdacalculus—evenbeforeGödel’s theorem— therewerecombinators.Theyweretheveryfirstabstractexamplesevertobe constructedofwhatwenowknowasuniversalcomputation—andtheywerefirst presentedonDecember7,1920.Inanalternativeversionofhistoryourwhole computinginfrastructuremighthavebeenbuiltonthem.Butasitis,fora century, theyhaveremainedforthemostpartakindofcuriosity—andapinnacle ofabstraction,andobscurity. It’s nothardtoseewhy. Intheiroriginalformfrom1920,thereweretwobasic combinators, sandk,whichfollowed thesimplereplacement rules(nowrepre- sentedverycleanly intermsofpatternsintheWolfram Language): s[x_][y_][z_]x[z][y[z]] k[x_][y_]x Theideawasthatanysymbolicstructurecouldbegeneratedfromsomecombina- tionofs’sandk’s.Asanexample, considera[b[a][c]].We’re notsayingwhata,b andcare;they’rejustsymbolicobjects.Butgivena,bandchowdoweconstruct a[b[a][c]]?Well, wecandoitwiththes,kcombinators. Considerthe(admittedlyobscure)object s[s[k[s]][s[k[k]][s[k[s]][k]]]][s[k[s[s[k][k]]]][k]] (sometimesinsteadwrittenS(S(KS)(S(KK)(S(KS)K)))(S(K(S(SKK)))K)). 3 Page3 from 01-CCP-hbbook-View-01-3.pdf 1 4/30/21 11:59 AM COMBINATORS:ACentennialView Nowtreatthislikeafunctionandapplyittoa,b,c [a][b][c].Then s[s[ k[s] ][s[k[k]][s[k[s]][k]]]][s[k[s[s[k ][k]]]][k]] watchwhathappenswhenwerepeatedlyusethes,kcombinatorreplacementrules: s[s[k[s]][s[k[k]][s[k[s]][k]]]][s[k[s[s[k][k]]]][k]][a][b][c] s[k[s]][s[k[k]][s[k[s]][k]]][a][s[k[s[s[k][k]]]][k][a]][b][c] k[s][a][s[k[k]][s[k[s]][k]][a]][s[k[s[s[k][k]]]][k][a]][b][c] s[s[k[k]][s[k[s]][k]][a]][s[k[s[s[k][k]]]][k][a]][b][c] s[k[k]][s[k[s]][k]][a][b][s[k[s[s[k][k]]]][k][a][b]][c] k[k][a][s[k[s]][k][a]][b][s[k[s[s[k][k]]]][k][a][b]][c] k[s[k[s]][k][a]][b][s[k[s[s[k][k]]]][k][a][b]][c] s[k[s]][k][a][s[k[s[s[k][k]]]][k][a][b]][c] k[s][a][k[a]][s[k[s[s[k][k]]]][k][a][b]][c] s[k[a]][s[k[s[s[k][k]]]][k][a][b]][c] k[a][c][s[k[s[s[k][k]]]][k][a][b][c]] a[s[k[s[s[k][k]]]][k][a][b][c]] a[k[s[s[k][k]]][a][k[a]][b][c]] a[s[s[k][k]][k[a]][b][c]] a[s[k][k][b][k[a][b]][c]] a[k[b][k[b]][k[a][b]][c]] a[b[k[a][b]][c]] a[b[a][c]] Or, atinybitlessobscurely: s s[k[s]][s[k[k]][s[k[s]][k]]] s[k[s[s[k][k]]]][k] a [b][c] s k[s] s[k[k]][s[k[s]][k]] a [s[k[s[s[k][k]]]][k][a]][b][c] k s a [s[k[k]][s[k[s]][k]][a]][s[k[s[s[k][k]]]][k][a]][b][c] s s[k[k]][s[k[s]][k]][a] s[k[s[s[k][k]]]][k][a] b [c] s k[k] s[k[s]][k] a [b][s[k[s[s[k][k]]]][k][a][b]][c] k k a [s[k[s]][k][a]][b][s[k[s[s[k][k]]]][k][a][b]][c] k s[k[s]][k][a] b [s[k[s[s[k][k]]]][k][a][b]][c] s k[s] k a [s[k[s[s[k][k]]]][k][a][b]][c] k s a [k[a]][s[k[s[s[k][k]]]][k][a][b]][c] s k[a] s[k[s[s[k][k]]]][k][a][b] c k a c [s[k[s[s[k][k]]]][k][a][b][c]] a s k[s[s[k][k]]] k a [b][c] a k s[s[k][k]] a [k[a]][b][c] a s s[k][k] k[a] b [c] a s k k b [k[a][b]][c] a k b k[b] [k[a][b]][c] ab k a b [c] a[b[a][c]] Afteranumberofsteps,wegeta[b[a][c]]!Andthepointisthatwhateversymbolic constructionwewant,wecanalwayssetupsomecombinationofs’sandk’sthat willeventuallydoitforus—andultimatelybecomputationuniversal.They’re 4 CCP-Book-Part01-20210427.pdf 12 4/28/21 10:48 AM UltimateSymbolicAbstraction equivalenttoTuringmachines,lambdacalculusandallthoseothersystemswe knowareuniversal.Buttheywerediscoveredbeforeanyofthesesystems. Bytheway, here’stheWolframLanguagewaytogettheresultabove(//.repeatedly appliestherulesuntilnothingchangesanymore): In[]:= s[s[k[s]][s[k[k]][s[k[s]][k]]]][s[k[s[s[k][k]]]][k]][a][b][c]//.{s[x_][y_][z_]x[z][y[z]],k[x_][y_]x} Out[]= a[b[a][c]] And,yes,it’snoaccidentthatit’sextremelyeasyandnaturaltoworkwithcombi- natorsintheWolfram Language—becauseinfactcombinatorswerepartofthe deepancestryofthecoredesignoftheWolfram Language. Forme,though,combinatorsalsohaveanotherprofoundpersonalresonance. They’reexamplesofverysimplecomputationalsystemsthatturnout(aswe’llsee atlengthhere)toshowthesameremarkablecomplexityofbehaviorthatI’vespent somanyyearsstudyingacrossthecomputationaluniverse. Acenturyago—particularlywithoutactualcomputersonwhichtodoexperi- ments—theconceptualframeworkthatI’vedevelopedforthinkingaboutthe computationaluniversedidn’t exist.ButI’vealwaysthoughtthatofallsystems, combinatorswereperhapstheearliestgreat“nearmiss”towhatI’veendedup discoveringinthecomputationaluniverse. 5 CCP-Book-Part01-20210427.pdf 13 4/28/21 10:48 AM