Table Of ContentSpringer Proceedings in Mathematics & Statistics
Melvyn B. Nathanson Editor
Combinatorial
and Additive
Number Theory
CANT 2011 and 2012
Springer Proceedings in Mathematics & Statistics
Volume 101
Moreinformationaboutthisseriesathttp://www.springer.com/series/10533
Springer Proceedings in Mathematics & Statistics
Thisbookseriesfeaturesvolumescomposedofselectcontributionsfromworkshops
and conferences in all areas of current research in mathematics and statistics,
includingORandoptimization.Inadditiontoanoverallevaluationoftheinterest,
scientific quality, and timeliness of each proposal at the hands of the publisher,
individual contributions are all refereed to the high quality standards of leading
journals in the field. Thus, this series provides the research community with
well-edited, authoritative reports on developments in the most exciting areas of
mathematicalandstatisticalresearchtoday.
Melvyn B. Nathanson
Editor
Combinatorial and Additive
Number Theory
CANT 2011 and 2012
123
Editor
MelvynB.Nathanson
DepartmentofMathematics
LehmanCollege(CUNY)
Bronx,NY,USA
ISSN2194-1009 ISSN2194-1017(electronic)
ISBN978-1-4939-1600-9 ISBN978-1-4939-1601-6(eBook)
DOI10.1007/978-1-4939-1601-6
SpringerNewYorkHeidelbergDordrechtLondon
LibraryofCongressControlNumber:2014950047
MathematicsSubjectClassification(2010):05-06,11-06,05A17,05A18,05A19,05C35,11B05,11B13,
11B30,11B75,20M05,20F69,20F65
©SpringerScience+BusinessMediaNewYork2014
Thisworkissubjecttocopyright.AllrightsarereservedbythePublisher,whetherthewholeorpartof
thematerialisconcerned,specificallytherightsoftranslation,reprinting,reuseofillustrations,recitation,
broadcasting,reproductiononmicrofilmsorinanyotherphysicalway,andtransmissionorinformation
storageandretrieval,electronicadaptation,computersoftware,orbysimilarordissimilarmethodology
nowknownorhereafterdeveloped.Exemptedfromthislegalreservationarebriefexcerptsinconnection
with reviews or scholarly analysis or material supplied specifically for the purpose of being entered
and executed on a computer system, for exclusive use by the purchaser of the work. Duplication of
this publication or parts thereof is permitted only under the provisions of the Copyright Law of the
Publisher’slocation,initscurrentversion,andpermissionforusemustalwaysbeobtainedfromSpringer.
PermissionsforusemaybeobtainedthroughRightsLinkattheCopyrightClearanceCenter.Violations
areliabletoprosecutionundertherespectiveCopyrightLaw.
Theuseofgeneraldescriptivenames,registerednames,trademarks,servicemarks,etc.inthispublication
doesnotimply,evenintheabsenceofaspecificstatement,thatsuchnamesareexemptfromtherelevant
protectivelawsandregulationsandthereforefreeforgeneraluse.
While the advice and information in this book are believed to be true and accurate at the date of
publication,neithertheauthorsnortheeditorsnorthepublishercanacceptanylegalresponsibilityfor
anyerrorsoromissionsthatmaybemade.Thepublishermakesnowarranty,expressorimplied,with
respecttothematerialcontainedherein.
Printedonacid-freepaper
SpringerispartofSpringerScience+BusinessMedia(www.springer.com)
Preface
ThisvolumecontainsselectedpapersfromtworecentconferencesonCombinatorial
andAdditiveNumberTheory(CANT2011andCANT2012).
These meetings, which started in 2003, take place every year in May at the
CUNYGraduateCenterinNewYork.Ithasbecometraditionaltoincludenotonly
alargenumberofcontributedtalksbutalsoatleastoneseriesoftalksbyaninvited
lecturer.Speakersareencouragednottopreparehighlytechnicaltalksintendedonly
forthe“experts,”butto includeexpositoryandmotivationalmaterialandto tryto
maketheirlecturescomprehensibletograduatestudentswhoarejustbeginningto
think about research. For this reason, the conferences also include daily problem
anddiscussionsessions.
It is a pleasureto acknowledgethe supportof the NumberTheoryFoundation,
which has, for many years, facilitated the participation of undergraduate and
graduatestudentsintheseconferences.
MelvynB.Nathanson
v
Contents
GeneralizedRamanujanPrimes................................................ 1
NadineAmersi,OliviaBeckwith,StevenJ.Miller,RyanRonan,
andJonathanSondow
ArithmeticCongruenceMonoids:ASurvey.................................. 15
PaulBaginskiandScottChapman
AShortProofofKneser’sAdditionTheoremforAbelianGroups......... 39
MattDeVos
LowerandUpperClassesofNaturalNumbers............................... 43
L.HaddadandC.Helou
TheProbabilityThatRandomPositiveIntegersAre3-Wise
RelativelyPrime.................................................................. 55
JerryHu
Sharpness ofFalconer’sEstimate andthe SingleDistance
ProbleminZd .................................................................... 63
q
AlexIosevichandStevenSenger
FindingandCountingMSTDSets............................................. 79
GeoffreyIyer,OlegLazarev,StevenJ.Miller,andLiyangZhang
DensityVersionsofPlünneckeInequality:Epsilon-DeltaApproach....... 99
RenlingJin
ProblemsandResultsonIntersectiveSets .................................... 115
TháiHoàngLê
PolynomialDifferencesinthePrimes.......................................... 129
NeilLyallandAlexRice
vii
viii Contents
MostSubsetsAreBalancedinFiniteGroups................................. 147
StevenJ.MillerandKevinVissuet
GaussianBehaviorinGeneralizedZeckendorfDecompositions............ 159
StevenJ.MillerandYinghuiWang
Additive Number Theory and Linear Semigroups
withIntermediateGrowth ...................................................... 175
MelvynB.Nathanson
AdjoiningIdentitiesandZerostoSemigroups................................ 195
MelvynB.Nathanson
On the Grothendieck Group Associated to Solutions
of a Functional Equation Arising from Multiplication
ofQuantumIntegers............................................................. 203
LanNguyen
ThePlünnecke–RuzsaInequality:AnOverview ............................. 229
G.Petridis
LerchQuotients,LerchPrimes,Fermat-WilsonQuotients,
andtheWieferich-Non-WilsonPrimes2,3,14771........................... 243
JonathanSondow
OnSumsRelatedtoCentralBinomialandTrinomialCoefficients ........ 257
Zhi-WeiSun
Generalized Ramanujan Primes
NadineAmersi,OliviaBeckwith,StevenJ.Miller,RyanRonan,
andJonathanSondow
Abstract In 1845, Bertrand conjectured that for all integers x (cid:2) 2, there exists
at least one prime in .x=2;x(cid:2). This was proved by Chebyshev in 1860 and then
generalized by Ramanujan in 1919. He showed that for any n (cid:2) 1, there is a
(smallest) prime R such that (cid:3).x/ (cid:3) (cid:3).x=2/ (cid:2) n for all x (cid:2) R . In 2009
n n
Sondow called R the nth Ramanujan prime and proved the asymptotic behavior
n
R (cid:4) p (where p is the mth prime). He and Laishram proved the bounds
n 2n m
p < R < p , respectively, for n > 1. In the present paper, we generalize
2n n 3n
the intervalof interest by introducinga parameterc 2 .0;1/ and defining the nth
c-Ramanujan prime as the smallest integer R such that for all x (cid:2) R , there
c;n c;n
are at least n primes in .cx;x(cid:2). Using consequences of strengthened versions of
the Prime Number Theorem, we prove that R exists for all n and all c, that
c;n
Rc;n (cid:4) p n as n ! 1, and that the fraction of primeswhich are c-Ramanujan
1(cid:2)c
convergesto1(cid:3)c.Wethenstudyfinerquestionsrelatedtotheirdistributionamong
theprimesandseethatthec-Ramanujanprimesdisplaystrikingbehavior,deviating
significantlyfromaprobabilisticmodelbasedonbiasedcoinflipping.Thismodel
isrelatedtotheCramermodel,whichcorrectlypredictsmanypropertiesofprimes
onlargescalesbuthasbeenshowntofailinsomeinstancesonsmallerscales.
N.Amersi
DepartmentofMathematics,UniversityCollegeLondon,GowerStreet,
LondonWC1E6BT,UK
e-mail:n.amersi@ucl.ac.uk
O.Beckwith
DepartmentofMathematics,EmoryUniversity,404DowmanDrive,Atlanta,GA30322
e-mail:olivia.dorothea.beckwith@emory.edu
S.J.Miller((cid:2))
DepartmentofMathematicsandStatistics,WilliamsCollege,Williamstown,MA01267,USA
e-mail:sjm1@williams.edu;Steven.Miller.MC.96@aya.yale.edu
R.Ronan
DepartmentofElectricalEngineering,CooperUnion,NewYork,NY10003,USA
e-mail:ronan2@cooper.edu
J.Sondow
209West97thStreet,NewYork,NY10025,USA
e-mail:jsondow@alumni.princeton.edu
©SpringerScience+BusinessMediaNewYork2014 1
M.B.Nathanson(ed.),CombinatorialandAdditiveNumberTheory,Springer
ProceedingsinMathematics&Statistics101,DOI10.1007/978-1-4939-1601-6__1
Description:This proceedings volume is based on papers presented at the Workshops on Combinatorial and Additive Number Theory (CANT), which were held at the Graduate Center of the City University of New York in 2011 and 2012. The goal of the workshops is to survey recent progress in combinatorial number theory