ebook img

Colour Appearance Issues in Digital Video, HD/UHD, and D‑cinema PDF

158 Pages·2017·5.82 MB·English
by  
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Colour Appearance Issues in Digital Video, HD/UHD, and D‑cinema

Colour Appearance Issues in Digital Video, HD/UHD, and D‑cinema Charles Poynton B. A., Queen’s University, 1976 Thesis Submitted in Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy Under Special Arrangements with Graduate and Postdoctoral Studies and Faculty of Applied Sciences © Charles Poynton 2018 Simon Fraser University Summer 2018 Copyright in this work rests with the author. Please ensure that reproduction or re-use is done in accordance with relevant copyright regulations. Approvals Charles Poynton Colour Appearance Issues in Digital Video, HD/UHD, and D‑cinema for the degree of Doctor of Philosophy Examining committee Chair: Binay Bhattacharya Professor, Computing Science Senior supervisor: Brian Funt Professor, Computing Science Supervisor: Mark Drew Professor, Computing Science Supervisor: Kathleen Akins Professor, Philosophy Examiner: Lyn Bartram Associate Professor, School of Interactive Arts and Technology External examiner: Michael S. Brown Professor, EECS York University, Toronto Date Defended/Approved 2018-07-30 Date of this version 2019-10-04 ii Abstract For many decades, professional digital imaging has faced a dilemma. On one hand, imaging scientists and engineers – and, within the last two decades, programmers – have been taught that the goal of imag- ing technology is the accurate “reproduction” of colour values (most commonly quantified by luminance, tristimuli, and/or chromaticity) on a display device. On the other hand, digital imaging craftspeople and artists have learned to manipulate image data as required to yield the intended visual result, objective inaccuracy notwithstanding. These approaches have been at odds owing to a fundamental aspect of colour vision: Colour appearance depends upon the visual conditions of a scene or a display (particularly, its absolute illuminance or lumi- nance), the region surrounding the acquired portion of the scene or the displayed image, and whether the display is emissive or reflective. The dependence of perceived colour upon absolute luminance and sur- round conditions is well known in colour science. In the last 20 years, these visual effects have been quantified in colour appearance models, and have been standardized (in CIECAM02). However, these effects, and colour appearance theory, remain largely unknown to imaging engineers. Despite the reluctance of scientists and engineers to abandon their goal of physical accuracy, appearance effects have, in fact, been accommodated in commercially important imaging systems. However, appearance effects have been compensated largely at the level of craft, not science or engineering. Compensation of appearance effects has been subject to such confusing nomenclature and such poor documen- tation that it has remained mostly invisible or mysterious to the scien- tists and engineers. This thesis seeks to develop a systematic analysis that bridges visual psychophysics, colour appearance theory, and the practice of image sig- nal processing in modern digital imaging systems. I analyze and docu- ment the colour appearance compensation methods that have evolved in modern digital imaging, and I link to these methods to modern psychovisual principles and to colour appearance theory. iii iv dedicated to Alexander Johnston 1839 –1896 artist and photographer Wick, Caithness Scotland and Alexander Johnston 1920 –1989 rangeland ecologist, research scientist, and historian Lethbridge, Alberta Canada v vi Acknowledgements Thanks to my supervisor Brian Funt, who waited much longer than he  anticipated, even taking into account Hofstadter’s Law.  Thanks to my other two supervisory committee members, Kathleen  Akins and Mark Drew, for agreeing to participate in what – even at the  outset – promised to be an unconventional PhD programme. Thanks to  my examiners for their thoughtful comments.  Thanks to the faculty members at other institutions who helped in  various ways: Mark Fairchild, Richard Hornsey, Sabine Susstrunk, and  為ヶ谷 秀一 (Tamegaya, Hideichi).  I thank Michael Brill for teaching me, 15 years ago, the vital  importance of distinguishing absolute and relative luminance, and of  using the correct letter symbols. And for writing a poem about me.  I acknowledge four colleagues-turned-friends who offered me  encouragement in the early stages but sadly are no longer with us;  I think they would have enjoyed the result: Dick Shoup, Lou Silverstein,  Jim Whittlesey, and Lance Williams.  I formulated many of the ideas expressed here while teaching.  Thanks to my long-time collaborators in that effort: Katrin Richthofer  and Peter Slansky at HFF Munich; and Dirk Meier, Edmond Laccon, and  all of the UP.GRADErs at DFFB Berlin.  Thanks to my personal network of colleague/friend reviewers, who  provided valuable criticism – some, quite harsh! – and literally hundreds  of suggestions and corrections, all taking time to help me while  pursuing their own dreams: Don Craig, Dave LeHoty, Barry Medoff,  Katherine Frances Nagels, Julia Röstel, Mark Schubin, Jeroen Stessen,  菅原正幸 (Sugawara, Masayuki), and Louise Temmesfeld.  Thanks to my friends, who provided companionship, advice,  encouragement, coffee, and other necessities; especially: Marianne  Apostolides, Jan Fröhlich, Ken Leese, Paul Mezei, and Jan Skorzewski.  Thanks to my family members for encouragement, support, and love:  Quinn, Georgia, and Peg.  Thanks most of all to Barbara, my partner in life. Now it’s your turn.       vii viii Contents List of Figures xiii List of Tables xv Acronyms & initialisms xvii Symbols & notation xxi 1 Background & introduction 1 2 Image acquisition and presentation 5 Entertainment programming 6 Axiom Zero 6 OETF and EOTF 8 EOTF standards 8 Image state 8 Acquisition 10 Consumer origination 10 Consumer electronics (CE) display 10 3 Perceptual uniformity in digital imaging 11 Introduction to perceptual uniformity 11 Luminance 12 Tristimulus values 13 Picture rendering I 13 Visual response 14 Logarithmic approximation 15 Lightness 17 Display characteristics and EOTF 18 Eight-bit pixel components 19 Comparing 2.2- and 2.4-power EOTF with CIE L*    21 Picture rendering II 22 Gamma correction 22 Tristimulus values 24 Modern misconceptions 24 Modern practice in video and HD 26 Modern practice in digital cinema 26 Perceptual quantization (PQ) 28 ix Summary 28 4 Lightness mappings for image coding 29 Absolute and relative luminance (L and Y ) 29 Brightness and lightness 30 Contrast 31 Contrast sensitivity 32 Historical survey of lightness mappings 33 Weber-Fechner 33 De Vries and Rose 35 Stevens 36 Unification 37 Practical image encodings 37 Implementing de Vries-Rose 39 Medical imaging 41 FilmStream coding for digital cinema 43 Summary 44 5 Appearance transforms in video/HD/UHD/D‑cinema 45 sRGB coding 46 Colour appearance 46 Highly simplified pipeline 48 Definition of scene-referred 50 Definition of display-referred 50 Scene rendering in HD 51 Chroma compensation 52 Axiom Zero revisited 53 Display rendering 54 Scene rendering in sRGB 55 Composite pipeline 56 Optical-to-optical transfer functions (OOTFs) 57 ACES 58 Summary 59 6 Analysing contrast and brightness controls 61 Introduction 61 History of display signal processing 62 Algorithm 65 Digital driving levels 68 Relationship between signal and lightness 69 Effect of contrast and brightness on contrast and brightness 70 LCDs 72 An alternate interpretation 74 Black level setting 76 Non-entertainment applications 77 Summary 78 7 Analysis of greyscale medical image display 81 DICOM 81 Window and level 82 DICOM GSDF 83 Digital driving levels (DDLs) and display EOTF 85 x CONTENTS

Description:
of colour vision: Colour appearance depends upon the visual conditions visual psychophysics, colour appearance theory, and the practice of image sig- . Review of perceptual uniformity and picture rendering in video 123.
See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.