©EntomologicaFennica.15December2010 Colonization of experimentally arranged resource patches – a case study of fungivorous beetles AnneSverdrup-Thygeson Sverdrup-Thygeson,A.2010:Colonizationofexperimentallyarrangedresource patches–acasestudyoffungivorousbeetles.—Entomol.Fennica21:139–150. Thestudyfocusesonacolonizationexperimentofbeetles,usingsporocarpsof tinder fungus Fomes fomentarius. Initially, a mapping of all sporocarps of F. fomentarius and its inhabitants was made in a 225 ha area of boreal forest in southernNorway(controldataset).62%ofthesporocarpscontainedoneormore beetleindividuals.Experimentalsporocarpswerethenplacedoutforthreeyears, collectedanddissected.21%ofthesewerecolonized.Thecomparisonbetween control and experiment showed that species assemblages were rather similar. Successfulbetween-treecolonizationandreproductioninexperimentalsporo- carps by the darkling beetle Bolitophagus reticulatus was observed. Cis jacquemartiicolonized14%oftheexperimentalsporocarps,andtherewasnoef- fectofdistancefromknowndispersalsourcesoncolonizationforthisspecies. ThisindicatesthatC.jacquemartiiwaswellabletolocateandcolonizenewsub- stratewithinthescalecoveredinthestudy. A.Sverdrup-Thygeson,NorwegianInstituteforNatureResearch,Gaustadalléen 21,NO-0349Oslo,Norway;E-mail:[email protected] Received15February2010,accepted18August2010 1.Introduction wood in the forest is well below natural condi- tions (Siitonen 2001). Some saproxylic species Dispersalisabasicpropertyinecologyandinflu- havealreadydisappeared;severalhundredmore ences the life history of an organism in several arelistedonvariousnationalRedlistsinNorth- ways.Infragmentedlandscapesoftoday’sworld, ernEuropeasindangerofextinction(Balevièius thedispersalofmanyspeciesisimpeded,asthey 1992,Lilleleht1998,FinnishEnvironmentInsti- face isolation between their suitable habitat tute 2000, Gärdenfors 2005, Kålås et al. 2006). patches.Onesuchgroupofspeciesisthesapro- Theaccumulatingeffectofintensiveforestman- xylicinsects(Speight1989);theinsectsdepend- agementhasalsobeenshowntoindicateanex- ent on dead and decaying wood or other sapro- tinction debt in saproxylic insects in Finland xylic organisms such as wood rotting fungi for (Hanski2000). theirsurvival.Althoughmodernforestmanage- The need for better knowledge on how for- ments,e.g.inFennoscandia,strivestoaccommo- estryaffectssaproxylicspeciesisthereforecriti- date the requirements of forest living species cal.Severalstudieshavebeenconductedtoeluci- throughstandardsofsustainableforestmanage- date the mechanisms of dispersal in saproxylic mentandprinciplesofforestcertification,com- beetlesinFennoscandia(Sverdrup-Thygeson& parisonsindicatethattheamountofcoarsedead Midtgaard1998,Ranius&Hedin2001,Jonsson 140 Sverdrup-Thygeson (cid:127) ENTOMOL.FENNICAVol.21 2003, Gibb et al. 2006b) and other regions phagous beetle Bolitophagus reticulatus (e.g. (Schiegg 2000, Grove 2002, Starzomski & Nilsson 1997, Rukke & Midtgaard 1998, Sver- Bondrup-Nielsen2002,Buseetal.2007),butthe drup-Thygeson & Midtgaard 1998, Olberg & interpretationofdispersalpatternsisnotstraight- Andersen 1999, Jonsell et al. 2003, Jonsson forward.Caremustbetakenwhenextrapolating 2003). between spatial scales, and when extending the A relevant question in field experiments is temporalfocus.Especially,theeffectofrarebut whether the assemblages colonizing the experi- successfullongdistancedispersaleventsishard mentalresourcepatchesareindeedrepresentative toevaluate,andsucheventsareeasilymissedin ofthetrueassemblagesinhabitingthenaturaloc- fieldstudies. currencesoftheseresources.Thisisimportantin Onechallengeindispersalstudiesofinsectsis ordertojudgetherelevanceoftheresultsofsuch tofindsoundmethods.InareviewpaperRanius fieldexperimentsandtoevaluatewhetherexperi- (2006) lists several examples of possible meth- mentally arranging empty resource patches is a ods,suchascapture-recapturemethods,teleme- soundmethodtouse.Thishasbeendonefordif- try,studiesofoccurrencepatterns,geneticstud- ferenttypesofresourcespreviously:Jonselletal. ies, observations of flight in field or in lab, and (2004)showedthattheassemblageinartificially colonizationexperiments.Inthispaper,Ifocuson created high stumps mimic that of natural high the latter; colonization experiments under full stumps,andJanssonetal.(2009)statethatamong scalefieldconditions. beetles found in hollow oaks which were either Lately,fieldexperimentshavebecomeacom- tree-hollowspecies,birdnestspecies,orwoodrot monmethodforstudyingdispersal,colonization species, 70% were also found in the artificial and resource utilization by saproxylic insects. boxes. The beetle fauna in sporocarps has also Severalsmallandlargefieldexperimentsinbo- been compared earlier, as Jonsell et al. (1999) realforesthavecreatedemptyresourcepatches– found the fauna in experimental sporocarps of oftenarrangingthemincertainpatternsrelatedto tinderfungusFomesfomentarius(L.ex.Fr.)and management,distancefromcolonizationsources FomitopsispinicolaFr.(Karst.)tobecomparable etc.–andplacedthemoutwithinthenaturaldis- to the communities in natural sporocarps from tribution area of relevant species (or sometimes nearbyareas.IntheJonselletal.study,theexper- outside,seeNilssen1984).Thetypeofnewre- imentaltinderfungussporocarpswerefreshand source patches range widely in scale and type; onlyplacedoutforashorttimeperiod(7weeks). fromforeststands“treated”withcertainretention Thesporocarpsweremountedonwoodenboards levels or with forest fire (Eriksson et al. 2006, (meanttoinvestigatebetween-treecolonization), Hyvärinen et al. 2006), via artificially created or nailed to stems of dead birches bearing old highstumpsandlogs(e.g.Schroederetal.1999, sporocarpsoftinderfungus(tostudywithin-tree Sverdrup-Thygeson & Ims 2002, Gibb et al. colonization). No between-tree colonization by 2006a, Johansson et al. 2006a, Johansson et al. B.reticulatuswasobservedinthatstudy. 2007,Fossestøl&Sverdrup-Thygeson2009),ar- Iwantedtostudythebeetlecommunityintin- tificialnestboxesthatimitatecavitiesinold,hol- derfungusinanexperimentalset-upthatresem- lowtrees(Janssonetal.2009),tosporocarpsof bled the natural situation as much as possible. fungi(Jonselletal.1999,Jonsson&Nordlander Most of the associated beetle species utilize the 2006). sporocarpsaftertheyaredead,thereforeIchose Sporocarpsoffungiconstituteclearlydefined tousedeadsporocarpsandtomountthemonre- resourcepatchesforthebeetles,manyofwhich centlydeadbirchstumps;theirnaturalsubstrate aremonophagousonspecificfungi.Tinderfun- in the study area. As dead tinder fungus sporo- gusiscommonlydistributedovermostofFenno- carps can remain intact for years (e.g. Nilsson scandiaandhostsseveralsuchbeetlespecialists. 1997), and the flight period of B. reticulatus is Thesecharacteristicsmakethesystemanattrac- short(Jonselletal.2003),Ialsofeltitnecessary tivemodelsystem,andahandfulofstudiesoftin- toextendthetimeofexposureoftheexperimental derfungusanditsinhabitantshavebeencarried sporocarpstothreeyears. out the past 15 years, especially on the mono- InthisstudyIfocusontheuseofexperimental ENTOMOL.FENNICAVol.21 (cid:127) Colonizationofexperimentalsporocarps 141 resourcepatchesintheformofsporocarpsoftin- possible, avoiding sporocarps diverging too derfungus.Withaclose-to-naturalexperimental muchinsize,decayorhumidity.Thesporocarps set-up,Iinvestigatewhetherthecolonizingbeetle wereplacedinasuperfreezerat–70°Cforsev- assemblages, including the much studied B. eraldaysinordertokillallbeetleindividualsin- reticulatus,arerepresentativeoftheassemblages side. The sporocarps were then attached at 1 m in naturally occurring sporocarps in the same heighton2mhighfreshlycutbirchtrees(10–15 area.Ialsowanttoinvestigatewhatfactorsinflu- cmdiameter).Thebirchtreepolesweremounted ence the colonization of empty experimental vertically at random points in the study area, patches,especially towhatdegreethecoloniza- avoiding the border towards non-mapped areas tion ofempty habitat patches relates to relevant (Fig.1). dispersalsourcesinthesurroundingforest.This Theexperimentalsporocarpswereleftinthe was done by placing out empty sporocarps in a forestfor3summersandcollectedinthelatefall study area where the distribution pattern of the of the third year. 3 sporocarps were destroyed relevantfungivorousspecieswasmappedinad- overthecourseoftheyears,sothefinalnumber vance,atascaleofsomehundredsofhectares. of replicates was 77. All sporocarps were dis- sectedatonce,andspecieswereidentifiedandre- corded. In order to avoid possible confounding 2.Methods frompre-experimentbeetleindividualskilledin the freezing process and still not decomposed, Thepresentstudyisbasedontwoperiodsoffield onlylivingbeetleswereusedinfurtheranalyses. work.First,in1992,allsporocarpsoftinderfun- I calculated colonization rate as the propor- gusF.fomentariuswithina225haareaofboreal, tionofsporocarpsthatwereinhabitedbyatleast spruce dominated forest 60 km east of Oslo in one beetle individual. I compared colonization south-eastern Norway were recorded and ratebetweentheexperimentandthecontrolboth mapped(Fig.1).Thefungusgrewondeadbirch by comparing observed rates, and by a re- trees which could be found as single trees or in sampling procedure. In the resampling, I ran- groupsamongtheborealconiferoustreespecies domlyselected77sporocarpsfromthepoolofthe (seeSverdrup-Thygeson&Midtgaard(1998)for 367 control sporocarps 10,000 times, and re- moredetaileddescriptionofstudyarea).Oneach corded the resulting resampled distribution of tree with F. fomentarius sporocarps, one third meancolonizationrate.Thiswasdonetoelimi- (butalwaysatleastone)ofthedeadsporocarps natedifferencesduetounevennumberofsamp- wascollectedandrearedisolatedfor2monthsin lingunitsofexperimentalandcontrolsporocarps. alaboratoryat20°C.Finally,allsporocarpswere Inaddition,Iwantedtocomparethecharac- dissectedtofindbeetlespecimensremainingin- teristicsoftheoccupiedexperimentalsporocarps, side. This result represents the naturally occur- withasimilarnumberofcolonizedcontrolsporo- ring beetle community in tinder fungus in the carps. In order to achieve this, I ran a similar area.Basedontheassumptionthatpresenceofa resampling procedure (10,000 iterations) in beetlespeciesinonesporocarponatreeisarea- which a subsample of 16 colonized sporocarps sonableindicationofpresencealsointheremain- (i.e.thenumberofoccupiedsporocarpsintheex- ing,uncollectedsporocarpsonthattree(asshown periment)wereselectedrandomlyfromthepool for Bolitophagus reticulatus (Linnaeus, 1767) of367controlsporocarps.Ithenrecordedthedis- (Tenebrionidae)inSverdrup-Thygeson&Midt- tribution of the resampled cumulative species gaard (1998)), this presence denotes a potential richness(foreachsetof16sporocarps),species dispersal source for the species (excluding of richnesspersporocarps,andnumberofindividu- course the trees with only one sporocarp). This alspersporocarpintheexperimentalsporocarps. datasetisdenoted‘controldataset‘. Ialsowantedtoevaluatetheeffectofdistance InApriltwoyearslater,80deadbutlittlede- fromknownsourcesofdispersalforaspecies,if cayed sporocarps of F. fomentarius were col- sufficient data for the monophagous species lectedfromahighdensityareawestofOslo.Care couldbeattained.Asitturnedout,thiscouldonly wastakentomakethesampleashomogeneousas bedoneforonespecies(CisjacquemartiiMellié, 142 Sverdrup-Thygeson (cid:127) ENTOMOL.FENNICAVol.21 Fig.1.Mapofthestudy areashowingthepositions oftheexperimentaltinder fungussporocarpsandthe controlsporocarps(alltrees withnaturallyoccurringtin- derfungussporocarps).The experimentalsporocarps colonizedbyBolitophagus reticulatus(squares)and Cisjacquemartii(triangles) aremarked,aswellasthe experimentalsporocarps notcolonizedbyeitherof thesetwospecies(large points).Thecontrolsporo- carpsaremarkedwith small,darkpoints. ENTOMOL.FENNICAVol.21 (cid:127) Colonizationofexperimentalsporocarps 143 Table1.Beetlespeciesfoundin367sporocarpsofFomesfomentariusinthecontrolstudyandin77sporocarps intheexperiment,withabundance(no.ofindividuals),numberofoccurrences(no.ofsporocarpsitwasfoundin) foreachgroup. Species Abundance Occurrences Abundance Occurrences incontrol incontrol inexperiment inexperiment Cisjaquemartii 2,466 181 167 11 Bolitophagusreticulatus 1,121 96 5 1 Cislineatocribratus 159 26 1 1 Ciscastaneussyn.C.nitidus,C.ater 48 10 16 2 Dorcatomadresdensis 20 6 – – Leptusapulchella 16 14 – – Ropalodontuscornutum 12 3 – – Rhizophagusdispar 11 6 – – Ennearthroncornutum 9 5 – – Triplaxrussica 6 2 – – Leptusafumida 5 4 4 4 Cisbidentatus 4 3 – – Cerylonfagi 3 3 – – Lygisopterussanguineus 3 1 – – Acruliainflata 2 2 – – Dinaraeaaequata 2 2 – – Scaphisomaagaricinum 2 2 – – Agonumfuliginosum 1 1 – – Ampedusnigerinus 1 1 – – Anaspisrufilabris 1 1 2 2 Athetamyrmecobia 1 1 – – Atreluslongiceps 1 1 – – Biotomacrenata 1 1 – – Chryptocephaluspunctigel 1 1 – – Dinaraealinearis 1 1 – – Gyrophaenaboleti 1 1 – – Gyrophaenasp. 1 1 – – Lordithonlunulatus 1 1 – – Malthodessp. 1 1 – – Phratoravitellinae 1 1 – – Quediusplagiatus 1 1 – – Rhyncoluschloropus 1 1 – – Notiophilusbiguttatus – – 1 1 Phloeocharissubtilissima – – 1 1 Dorcatomachrysomelinus – – 1 1 Salpingusruficollis – – 1 1 1848(Ciiidae)),astheothershadtoofewoccur- fered and the water content of the sporocarps rences.Icalculatedthedistancefromeachexperi- upon collection varied accordingly. Therefore, mentalsporocarptotheclosesttreeinthecontrol volume(calculatedasthevolumeof¼ofanellip- datasetwithpresenceofC.jacquemartii,exclud- soid) and the water content (weight when col- ingtreeswithonlyonesporocarp.Thecorrelation lectedattheendofexperimentminusweightafter betweencolonizationanddistancetonearestin- dissectionanddryingat40°Cforoneweek)of habitedtreewasthencalculatedbymeansoflo- thesporocarpsweremeasured.Ithenusedlogis- gisticregression. ticregressiononthelog-transformedvariablesto Although the experimental sporocarps were analyzewhetherdifferenceinsizeorhumidityin- carefullypickedtomaximizehomogeneity,some fluenced colonization. All statistical analyses variation in size was inevitable. Also, the field werecarriedoutinR(version2.10.0)(RDevel- conditionsattherandomlychosenlocationsdif- opmentCoreTeam2007). 144 Sverdrup-Thygeson (cid:127) ENTOMOL.FENNICAVol.21 Fig.2.Boxplotsoftheresultsofresamplingeither77sporocarpsfromthecontrol(thenumberofexperimental sporocarps)(a)or16colonizedsporocarpsfromthecontrol(thenumberofcolonizedsporocarpsintheexperi- ment)(b–d).–a.No.ofcolonizedsporocarps.–b.No.ofindividualspercolonizedsporocarps.–c.Speciesrich- nesspercolonizedsporocarp.–d.Cumulativespeciesrichnessincolonizedsporocarps.Thestardenotesthe observedmeanvaluefromtheexperimentalsporocarps.The25and75percentileandthemedian(indicatedby theboxandthelineinside),mean(indicatedasasquare),confidenceinterval(arrowheads),minimumandmaxi- mumvalues(”whiskers”)andoutliers(dots)areshown. 3.Results mostcommonspecies,with63%oftheindividu- als, while B. reticulatus was the second most 3.1.Controldataset commonwith29%oftheindividuals. 367 dead sporocarps were collected from 204 birchtreesinfectedwithtinderfungusinsidethe 3.2.Experimentaldataset studyarea.62%ofthesporocarpscontainedone or more beetle individuals. In total, the sporo- The77sporocarpsintheexperimentalsetupwere carpscontained3904adultindividualsrepresent- colonized by 199 individuals from 10 different ing32beetlespecies(Table1). beetlespecies,ofwhich5speciesweresingletons 47%ofthespecieswereonlypresentinone (50%) (Table 1). Only 16 of the 77 sporocarps individual(singletons). C. jacquemartii wasthe (21%)werecolonizedbyoneormorespecies.In ENTOMOL.FENNICAVol.21 (cid:127) Colonizationofexperimentalsporocarps 145 addition to the beetles, larvae of Raphidioptera sp.(Diptera),werefoundin10sporocarpsanda Camponotus sp. (Hymenoptera) queen was foundinonesporocarp. 3.3.Comparisonwithassemblage innaturallyoccurringsporocarps Thecolonizationrateoftheexperimentalsporo- carpswasfarlowerthantheproportionofinhab- ited sporocarps in the complete control dataset, and bootstrapping also confirmed that this low proportion was not a likely result when repeat- edly resampling 77 sporocarps fromthecontrol dataset(Fig.2a). Still, when considering the sporocarps that actuallywerecolonized,theresamplingshowed thattheydidnotdiffersomuchfromthecontrol dataset.Thecumulativespeciesrichness,thespe- ciesrichnesspersporocarps,andthenumberof individuals per sporocarp in the experimental sporocarpsallwerewithintheconfidenceinter- valsofthecontrolsporocarps(Fig.2b–d). Therelativecontributionofeachofthemost abundantspecieswassomewhatdifferentinthe experimentandthecontroldataset(Fig.3).The threemostcommonspeciesoccurringintheex- perimental sporocarps were among the 4 most commonspeciesinthenaturallyoccurringsporo- carps, but in the experimental sporocarps, one species dominated the assemblage with 84% of theindividuals.Inthecontrolsporocarps,onthe other hand, two species constituted almost 2/3 and1/3each. Themaindifferencewasthelowcolonization oftheexperimentalsporocarpsbyB.reticulatus. C.jacquemartiiwasthemostabundantspeciesin Fig.3.Theproportionsofthefivemostabundantspe- bothdatasets,with84%oftheindividualsinthe ciesintheexperimentalsporocarps,forbothexperi- experimentand63% inthecontrol. Thesecond mentalsporocarpsandthenaturallyoccurring(con- most abundant species in the experiment, Cis trol)sporocarps. castaneusHerbst,1793(syn.C.alter,C.nitidus) (Ciiidae),with8%oftheindividuals,wasranked foundinoneindividualinoneoftheexperimental asthefourthmostabundantspeciesinthecontrol sporocarps. with1.2%oftheindividuals. B.reticulatusrangedthirdintheexperiment 3.4.Single-speciesanalysisofcolonization with3%oftheindividuals,andsecondinthecon- trol with 29% of the individuals. Cis lineato- 3.4.1.Cisjacquemartii cribratusMellié,1848(Ciiidae),whichwasthe third most common species in the control, was Only one beetle species colonized a sufficient 146 Sverdrup-Thygeson (cid:127) ENTOMOL.FENNICAVol.21 numberofexperimentalsporocarps(morethan5) colonizationofasuitablepatchofacertainsizeis to justify single-species analyses, namely C. dependentnotonlyonthedistancefromsuitable jacquemartii.Thiswasthemostabundantandthe sourcesandthesizesofthese,butalsoondura- mostcommonlyoccurringspecies,havingcolo- tion.Thecumulativechanceofadispersalevent nized 14% of the sporocarps during the three reaching the patch will increase with time, al- yearsoftheexperiment(Table1andFig.2). thoughitmightbecounteractedbytheslowdete- When analyzing the presence/absence of C. riorationofthepatch.Whenreachinglatestages jacquemartii as the response variable and dis- ofdecay,thesporocarpwillnolongerbeasuit- tancetothenearestotherinhabitedtreeasthepre- ablehomefortheassociatedspecies.Thisalsore- dictorvariable,therewasnoeffectofdistanceto latestoanotherfactorpossiblyaffectingthecolo- known dispersal sources (Logistic regression, nizationrate–whethertherelevantspecieswere ¤2=0.08,R2=0.001,p=0.8), abletolocatetheexperimentalsporocarpsinan Eventhoughthevarianceinvolumeoftheex- efficientway.Severalfungivorousinsectsrelyon perimentalsporocarpswaslimited(rangingfrom olfactorycuesinfindingsuitablesubstrate(Jon- 0.09dm3to0.4dm3),thesporocarpswhichwere sell & Nordlander 1995, Jonsson et al. 1997, colonized were significantly larger than those Johanssonetal.2006b),eitherintheformofphe- that were not colonized (Logistic regression, romones or through attraction to specific com- ¤2=4.285,R2=0.06,p=0.04).Ifoundnosuchef- poundsreleasedfromthehost.Fäldtetal.(1999) fect of water content (Logistic regression, did detect ethanol and acetic acid from newly ¤2=0.014,R2=0.0002,p=0.91). dead F. fomentarius sporocarps, which may be importantinattractinginsects.AlsoJonselletal. 3.4.2.Bolitophagusreticulatus (2003) found thattrapsbaited with ethanolor a combinationofethanolandthefungusattracted B. reticulatus had colonized at least one sporo- B.reticulatus.Mostspeciesthathavetheirlarval carp,where5livingimagineswerefoundwhen developmentinF.fomentariusovipositindeador dissecting the sporocarps. This experimental dyingfruitingbodies(Fäldtetal.1999),buteven sporocarp was 55 m away from the closest B. though I used birch tree poles for mounting to reticulatus-inhabited sporocarp. In addition, 12 mimictheodorsofdecayingbirch,olfactorycues sporocarpscontainedatotalof27deadimagines, connectedtothedyingstageofthesporocarpwill but as explained in Methods, dead specimens bemissed.Thiscouldhaveinfluencedthecoloni- wereexcludedfromanalyses. zationrate. Thelowcolonizationratesexperiencedinthe study differ from those of a field experiment in 4.Discussion andclosetoabirchforestinSweden(Jonsellet al.1999),wherelivingsporocarpsofF.fomenta- 4.1.Lowexperimentalcolonizationrate riuswereremovedfromtreesandplacedoutfor only one summer. In that study, all sporocarps The proportion of experimental sporocarps that placed inside the birch forest with high natural hadbeencolonizedthreeyearsafterbeingplaced abundanceofF.fomentariuswerecolonizedbyat outintheforest,iswellbelowtheproportionof least one species, and ca 75% when placed out inhabitednaturalsporocarpsinthecontrol(21% 150metersawayfromthebirchforest,inamono- vs.68%).Severalfactorscanservetoexplainthis culture of spruce. The proportion of natural F. difference.Forone,thecolonizationrateisprob- fomentarius sporocarps that were inhabited by ablyunderestimated,asonlybeetlesaliveatthe beetlesisnotgiven,butitwasprobablyhigh. endpointofthefieldstudywasconsidered.This In addition to differences related to decay wasdonetoavoidconfoundingcolonizingindi- stage of sporocarps, the difference between the vidualswithindividualsthathadbeeninthefun- studiescanbeduetothefactthatthesporocarps gus before the onset, and ensure a conservative ofJonselletal.(1999)wereplacedoutwithinand ratherthaninflatedjudgementofcolonization. closebyasignificantsourceofdispersalforthe Inaddition,thepatternreflectsthatsuccessful relevant species, while the presence of such a ENTOMOL.FENNICAVol.21 (cid:127) Colonizationofexperimentalsporocarps 147 ‘mainland’ (sensu Harrison & Taylor 1997) is studieshaveshownthatC.jacquemartiiismore missinginmystudyarea.Instead,sporocarpsin- abundant in larger sporocarps (Jonsell et al. habited by different species are spread out over 2001), which fits with the results on sporocarp theentire225haarea(seeFig.1). size. In addition to C. jacquemartii, C. castaneus was also found to have colonized a few experi- 4.2.Resemblanceofnatural mentalsporocarps(Table1,Fig.2).C.lineatocri- speciescommunities bratus was only found in one experimental sporocarp, even though it was common in the Although a low proportion of the experimental control sporocarps. Dorcatoma dresdensis sporocarps in the study was colonized (Fig. 1), Herbst,1792(Ptinidae),amonophagousspecies the assemblage in colonized sporocarps is still rankingasthefifthmostabundantspeciesinthe rather similar to the natural communities in the control,wasnotfoundtohavecolonizedanyof tinderfungusinthearea,withrespecttonumber the new sporocarps. The reason for this is not ofindividualsandspeciespersporocarp.Thereis clear, but could be related to dispersal abilities, atrendofhighercumulativespeciesrichnessin competition,ordifferencesinfactorstriggeringa the experimental sporocarps, indicating that the dispersalevent. (cid:1)-diversityintheexperimentalsporocarpsmight Jonselletal.(1999)foundthatthebeetlesbe- be higher, but the difference is not significant. longingtothegenusDorcatomaweremoresuc- Such a pattern could make sense if placing out cessfulincolonizingdistantpatchesthanspecies empty,deadsporocarpscouldbeseenasawayto ofthegenusCis,eventhoughthelatteraremore removetheeffectsofspeciessuccessionandin- widelydistributedandmorecommoninFenno- terspecificcompetition,byintroducingemptyre- scandia. This does not fit with my results. As source patches in a decay stage where it would Ranius(2006)pointsout,thelackofdataonthe usuallybefilledupwithestablishedspecies. populationsize(thenumberofpotentialcoloniz- TheCis-speciesthatwerecommoninthecon- ers)couldlimitthegeneralizationsoftheJonsell trol, Cis jacquemartii, Cis lineatocribratus and etal.(1999)results.Also,differencesintheex- Cis castaneus (syn. C. alter, C. nitidus) are all perimentalsetupscouldbealikelyexplanation. mainly developing in F. fomentarius in Fenno- Thesecondmostcommonspeciesinthenatu- scandia,althoughC.castaneuscanalsooccurin ralsporocarps,B.reticulatus,wasfoundtohave PiptoporusbetulinusorFomitopsispinicola,and colonizedatleastoneexperimentalsporocarp,in C.lineatocribratuscanoccurinF.pinicola(Thu- which5livingbeetleswerefound.Severalearlier nes1994,Jonselletal.2001,Jonsell&Nordlan- papershavefocusedonthismonophagoustinder der2002).BothP.betulinusandF.pinicolawere fungusbeetleandtheapparentmismatchbetween present, but in very low numbers in the study thefactthatthespeciesisrathercommon,andon area. theothersidethefactthatitsincidencepatternhas C.jacquemartiiwasthemostsuccessfulcolo- beenshowntocorrelatenegativelywithisolation nizerinthestudy,foundin14%oftheexperimen- (Rukke&Midtgaard1998,Sverdrup-Thygeson talsporocarps(Table1andFig.2).Theresultof &Midtgaard1998).Recentexplanationstothis thedistanceanalysisdoesnotindicateanycorre- distributionpatternandtheabsenceoftree-level- lation between colonization and distance to colonization in earlier colonization experiments sporocarpswithanestablishedpopulation. (Jonselletal.1999,2003)havefocusedontwo ThespeciescompositioninF.fomentarius-in- facts:Thespeciesseemstohaveashortflightpe- fected trees had been mapped two years earlier, riod(oneweek;Jonselletal.2003)andotherwise andcouldhavechangedsomewhatinthemean- disperse mostly by walking (Nilsson 1997). It time,andalsothespeciescompositioninthere- alsodisplaysattractiontothemixedodorsoftin- maining sporocarps could differ from those derfungusandethanol(Jonselletal.2003).Inthe reared. Differences in the characteristics of the present study, these factors were taken into ac- experimentalsporocarps,suchasthesmalldiffer- count:theprolongedexposureoftheexperimen- encesinvolume,alsoinfluencetheresult.Earlier tal sporocarps was intended to increase the 148 Sverdrup-Thygeson (cid:127) ENTOMOL.FENNICAVol.21 chance of colonization by including three flight References periods,andtheuseoffreshlycutbirchtreesfor mountingofexperimentalsporocarpswasmeant Balevièius,K.(ed.).1992:Lietuvosraudonojiknyga[Red to give natural olfactory and visual cues to dis- DataBookofLithuania]—LithuanianDepartmentof persingindividuals.Forthefirsttime,coloniza- EnvironmentalConservancy,Vilnius,Vilnius.364pp. tion followed by successful reproduction by B. Buse,J.,Schroder,B.&Assmann,T.2007:Modellingha- reticulatus between tree-level experimental bitatandspatialdistributionofanendangeredlong- patches was shown, although in low numbers. hornbeetle–Acasestudyforsaproxylicinsectconser- vation.—BiologicalConservation137:372–381. Thisindicatesthatthenaturaldispersaldynamics Eriksson,M.,Lilja,S.&Roininen,H.2006:Deadwood ofthespeciesoperateonaratherlongtimeframe creationandrestorationburning:Implicationsforbark compared to many other beetles, and that long beetlesandbeetleinducedtreedeaths.—ForestEco- timestudiesoveralargerareaarenecessarytode- logyandManagement231:205–213. tectcolonizationandreproductioninnewhabitat FinnishEnvironmentInstitute.2000:Threatenedspecies patches. in Finland 2000. Insects: Beetles. — [www docu- ment].URLhttp://www.ymparisto.fi/default.asp?no- de=8570&lan=en. (Site visited on 5 September, 2009). 4.3.Conclusion Fossestøl,K.O.&Sverdrup-Thygeson,A.2009:Saproxy- licbeetlesinhighstumpsandresidualdownedwood Thestudyconfirmsthatrichbeetleassemblages on clear-cuts and in forest edges. — Scandinavian JournalofForestResearch24:403–416. canbefoundinthefruitingbodiesofwood-de- Fäldt,J.,Jonsell,M.,Nordlander,G.&Borg-Karlson,A. cayingfungi,asshownbyseveralauthors(Jon- K.1999:VolatilesofbracketfungiFomitopsispinico- sell & Nordlander 2002, Komonen 2003). The laandFomesfomentariusandtheirfunctionsasinsect studyindicatesthatC.jacquemartiiisasuccess- attractants.—JournalofChemicalEcology25:567– fulcolonizer,wellabletolocateandcolonizenew 590. substratewithinthegeographicalscalecoveredin Gibb,H.,Hjälten,J.,Ball,J.P.,Atlegrim,O.,Pettersson, R. B., Hilszczanski, J., Johansson, T. & Danell, K. the study. The field experiment further docu- 2006a:Effectsoflandscapecompositionandsubstrate ments between-tree colonization for B. reticu- availabilityonsaproxylicbeetlesinborealforests:a latus.Theresultsindicatethatexperimentallyar- studyusingexperimentallogsformonitoringassem- ranging empty resource patches is a sound me- blages.—Ecography29:191–204. thodtobeusedinstudiesofbeetlesinsporocarps, Gibb,H.,Hjälten,J.,Ball,J.P.,Pettersson,R.B.,Landin, J.,Alvini,O.&Danell,K.2006b:Wingloadingand although there are certain differences in species habitatselectioninforestbeetles:Arered-listedspe- compositioncomparedtonaturalsporocarpsthat cies poorer dispersers or more habitat-specific than needsbestudiedfurther.Emphasisonmimicking common congenerics? — Biological Conservation naturalconditionsandincludingsufficientspatial 132:250–260. andtemporalscalecanincreasethechanceofin- Grove,S.J.2002:Saproxylicinsectecologyandthesustai- nablemanagementofforests.—AnnualReviewof terceptingallassociatedspeciesinnaturalratesin EcologyandSystematics33:1–23. experimentalset-ups. Gärdenfors,U.(ed.).2005:The2005redlistofSwedish species—ArtDatabanken,Sverigeslantbruksuniver- Acknowledgements.Iwouldliketothankmyfamilyfor sitet,Uppsala.496pp. helpfulfieldassistanceandSindreLigaardforassistancein Hanski,I.2000:Extinctiondebtandspeciescreditinbore- beetle identification. I am grateful to my colleagues at al forests: modelling the consequences of different NINA,especiallyOddStabbetorpandOlavSkarpaas,for approachestobiodiversityconservation.—Annales discussions,assistancewithstatisticsandusefulcomments ZoologiciFennici37:271–280. onearlierversionsofthismanuscript.Thestudyreceived Harrison,S.&Taylor,A.D.1997:Empiricalevidencefor financialsupportfromTheNorwegianResearchCouncil. metapopulationdynamics.—In:Hanski,I.&Gilpin, M.E.(eds.),Metapopulationbiology.Ecology,gene- ticsandevolution:27–42pp.AcademicPress,SanDi- ego.512pp. Hyvärinen,E.,Kouki,J.&Martikainen,P.2006:Fireand green-treeretentioninconservationofred-listedand raredeadwood-dependentbeetlesinFinnishborealfo- rests.—ConservationBiology20:1711–1719.