Collinearorderandchirality-reorientationtransition intheCairopentagonalmagnetBi Fe O F 4 5 13 Alexander A. Tsirlin,1,∗ Ioannis Rousochatzakis,2,† Dmitry Filimonov,3 Dmitry Batuk,4 Matthias Frontzek,5 and Artem M. Abakumov3,6,‡ 1ExperimentalPhysicsVI,CenterforElectronicCorrelationsandMagnetism,UniversityofAugsburg,86159Augsburg,Germany 2SchoolofPhysicsandAstronomy, UniversityofMinnesota, Minneapolis, Minnesota55455, USA 3Department of Chemistry, Lomonosov Moscow State University, 119991 Moscow, Russia 4EMAT, University of Antwerp, Groenenborgerlaan 171, B-2020 Antwerp, Belgium 5QuantumCondensedMatterDivision, OakRidgeNationalLaboratory, OakRidge, TN37831, USA 6Skolkovo Institute of Science and Technology, Nobel str. 3, 143026 Moscow, Russia 7 UsingacombinationofneutrondiffractionandMo¨ssbauerspectroscopy,weunravelthesequenceofmagnetic 1 ordersobservedinthefrustratedCairopentagonalmagnetBi4Fe5O13F.Theseordersincludetwoorthogonal 0 magnetic structures with opposite vector chiralities, and an intermediate, partly disordered collinear phase. 2 Stabilization of the collinear phase by quantum fluctuations was predicted theoretically, but Bi4Fe5O13F is veryfarfromtherelevantparameterregime.Basedonabinitioband-structurecalculations,weproposethatthe n unusualevolutionoftheorderedstatesisdrivenbythestrongsingle-ionanisotropyontheinterlayerFe3+spins, a whicharelocatedbetweentheCairoplanes. Thesespinsthenplayadualrole,ononehandmediatingthe3D J orderandontheotherdrivingareorientationbetweenthetwoorthogonalconfigurationshavingoppositevector 3 chiralities,withthecollinearordernaturallyemergingasanintermediatephase. 1 ] l Introduction–Frustratedmagnets[1–3]hostaplethoraof lent(Fig.1),buttheclassicalphasediagramofthisextended e remarkable collective phenomena, ranging from topological model is qualitatively the same (Fig. 3). Furthermore, the - r spin liquids, long-range entanglement and fractionalized ex- calculated interactions (reported here and in [25]) place the t s citations [4–10], to emergent electrodynamics and magnetic twocompoundsnearlyonthesamespotinthephasediagram, . t monopoles [11–13], and even to spin-induced ferroelectric- and deep inside the orthogonal phase. Despite this remark- a m ity [14–16]. While the majority of geometrically frustrated ablesimilarity,thetwocompoundsshowqualitativelydiffer- magnets are based on spin triangles (or tetrahedra in 3D), ent behavior. Bi Fe O orders in the anticipated orthogo- - 2 4 9 d pentagon-based magnets, which are far more difficult to im- nal state below 238K, but Bi Fe O F, where Cairo planes 4 5 13 n plement in real materials [17], are now attracting increasing are interleaved by an additional layer of Fe3 sites, shows o attentionbothintheory[18–27]andexperiment[28–34]. three successive transitions at T (cid:39) 178K, T (cid:39) 71K, c N 2 [ The main interest so far has been on the Cairo pentago- and T1 (cid:39) 62K [32], with three distinct magnetically or- nallattice,aperiodicarrangementofirregularpentagonswith dered states that we refer to as phase I (T < T1), phase II 1 v two types of sites, one with three-fold and the other with (T1 < T < T2), and phase III (T2 < T < TN). Phase I 9 four-foldconnectivity(Fig.1). Cairo-basedmodelshostvar- is orthogonal [32], whereas the nature of phases II and III is 3 iousphasesofclassicalandquantumnature[24],magnetiza- unknowntodate. 7 tionplateaux[22,24,26,27],andKosterlitz-Thoulesstransi- In this Letter, we unravel the nature of these phases, and 3 tions[22]. Bynow,therearetwomainrealizationsofthislat- elucidatetheirorigin. Ourmainfindingsare: 0 tice,Bi Fe O [28–31,34]andBi Fe O F[32],althougha i) The intermediate phase II is the quantum-mechanical, . 2 4 9 4 5 13 1 similarpentagonaltopologycanbealsoidentifiedinthemul- partially disordered collinear antiferromagnetic phase of 0 tiferroics RMn O (R=Bi, Y, or rare-earth) [35–42] that are Ref.[24](Fig.1e),despitethefactthatwearefarawayfrom 7 2 5 known for their complex interplay of commensurate and in- thecorrespondingregioninthephasediagramanddespitethe 1 : commensuratemagneticorderwithferroelectricity. large,‘classical’spinS =5/2. v ThesymmetricversionoftheCairoHeisenbergmodelhas ii) Phases I and III are both orthogonal, but with opposite i X two exchange couplings, J and J (Fig. 1a). It hosts vectorchiralitiesχ=±c,asdefinedinFig.1b.Sincethetwo 33 43 r three phases in the classical limit [24]: a coplanar orthog- statesaredegenerateontheleveloftheisotropic(Heisenberg) a onal phase (Fig. 1b), a collinear ferrimagnet, and a mixed model,anisotropymustplayarole. phase in between. Quantumfluctuations convertthe latterto iii) The onset of the collinear phase II coincides with the anon-magneticandpossiblyspin-nematicphaseforS=1/2. significantgrowingofthemomentontheinterlayerFe3sites, Additionally,theyintroduceanothercollinearphaseforsmall whichsitbetweentheCairoplanesandnormallyacttomedi- J /J [24]. Thisphasefeaturescollinearantiferromagnetic atethe3Dorderingbetweentheplanes,ase.g. inRef.[44]. 43 33 orderonallfour-foldsitesandonhalfofthethree-foldsites, TheFe3spinsareabsentinBi Fe O (whereneighboring 2 4 9 withtheremaininghalfbeingdisordered(Fig.1c). planescoupledirectlytoeachother),sotheemergingphysical Bi Fe O and Bi Fe O F feature dumbbells of the 4- picture is that the interlayer Fe3 spins play a vital role for 2 4 9 4 5 13 fold-sites instead of each single 4-fold site on the Cairo lat- the magnetic order within the Cairo plane. Specifically, the tice. Additionally, the couplings J and J(cid:48) are nonequiva- III→II→I transitions can be understood as a reorientation of 43 43 2 (a) J^ J J 43 33 c (b) (c) 2 3 am b m 1 4 orthogonal collinear Fe12 Fe21 Fe11 Fe22 J33 bm J 43 ’ J43 am (d) (e) (f) Phase I Phase II Phase III FIG. 1. (a) The symmetric Cairo lattice with two exchange couplings, J and J . (b-c) Orthogonal and collinear phases. Note the 33 43 zero moment on half of the 3-fold sites in (c). The Fe1 sites 1-4 in (b) provide a measure of the chirality as χ=(cid:104)Γ(cid:105)/|(cid:104)Γ(cid:105)|, where Γ= S ×S +S ×S +S ×S +S ×S .(d-f)MagneticstructuresofBi Fe O FinphasesI,II,andIII,respectively.ThetwotypesoftheJ 1 2 2 3 3 4 4 1 4 5 13 43 couplingsarealsoindicated.ThecrystalandmagneticstructuresarevisualizedusingVESTA[43]. thenominallypreferredorthogonalstate,fromoneorientation butnetmagnetizationiszero,becausesecond-neighborchains (phase III) that satisfies the anisotropy on the in-plane spins form opposite moments. At 1.5K, the moments are about to another orientation (phase I) that satisfies the anisotropy 4.0µ ontheFe1andFe3sitesand3.3µ ontheFe2sites. B B on the interlayer Fe3 spins, and in between the system must ThisdifferenceisduetothestrongerFe–Ohybridizationfor necessarilygothroughthecollinearphaseII. the tetrahedrally coordinated Fe atoms. We note in passing Neutron powder diffraction – All measurements were that the magnetic configuration in phase I deviates from our performed on single-phase polycrystalline samples of previousreport,namely,allspinsintheCairoplaneareturned Bi Fe O F prepared previously [32]. Neutron diffraction by90◦ withrespecttoFig.5inRef.[32]. Thisrevisedmodel 4 5 13 datawerecollectedatthecoldneutronpowderdiffractometer isbasedonthebetter-qualityneutrondata[47]. DMC (LNS PSI, Villigen, Switzerland) with the wavelength As T increases toward T , the Fe1 and Fe2 moments re- 1 of 4.5082A˚ in the T range of 1.5-200K in a He-cryostat. main roughly unchanged, whereas the moment on Fe3 de- ThemagneticstructureswererefinedbytheRietveldmethod creasessignificantlyanddropsbelow2µ at55K.Uponfur- B using the JANA2006 program [45]. The symmetry anal- therheating,themagneticstructurechangesabruptlyentering ysis of possible magnetic configurations was carried out in phaseII.AllFe1sitespreservelargemomentsof3.2-3.8µ , B ISODISTORT[46]. whereas the Fe2 sites split into two groups. For Fe2 , the 2 Phases I–III share the same propagation vector k = momentsincreaseto3.8µB, whereasforFe21 theydecrease (12,12,0) resulting in a single irrep mM5− allowing the mo- to about 1.2µB, only one third of their 1.5K value. The mentsintheabplane,similartoBi Fe O . Thisirrepcorre- magnetic structure is nearly collinear and surprisingly simi- 2 4 9 sponds to the tetragonal magnetic space group P 4 /n and lar to the collinear phase predicted for the quantum limit of C 2 the two-fold magnetic supercell defined as: a = a−b, theCairo-latticemodel[24]. Here,thelowersymmetryofthe m bm=a+b,cm=c. Thesymmetryimpliesfivenonequivalent lattice renders J43 different from J4(cid:48)3, hence the moment on Fepositions,asshowninFig.1: Fe11,Fe12,Fe21,andFe22 Fe21doesnotvanishcompletely. within the Cairo planes and Fe3 between the planes. Fig. 2a ThenarrowregionofphaseIIisfollowedbyabroaderre- showsthesizeofthemagneticmomentsasafunctionoftem- gionofphaseIII,whichisagainorthogonal,butwithopposite perature[47]. vectorchiralityχ=−c, incontrasttoχ=+cinphaseI.In PhaseI(Fig.1d)istheanticipatedorthogonalstate,where addition,themomentsonFe1 areabouttwicelargerthanon 1 spins on the Fe1 and Fe1 sites and on the Fe2 and Fe2 Fe1 , whereastheFe3momentsaretoosmalltobedetected 1 2 1 2 2 sitesaremutuallyorthogonal. Theorderingalongthecdirec- experimentally. We obtained µ = 0.29(25)µ at 90K Fe3 B tion is locally ferrimagnetic, Fe1↑Fe1↑Fe3↓Fe1↑Fe1↑Fe3↓, and,therefore,keptµ fixedatzerointhefinalrefinement. Fe3 3 4.0 0 netic moments ()mB213...000 FFFFeeee2113121 FFeeF22e2112 Fe11 (a) 40621 120908 KK (c) 1.5 withcollinearB Ferrimagnetic Mag0.0 0 FFee33202 6T0empe9r0ature1 2(K0) 150 180 bsorption (%)201 63 K (cid:144)J'J43331.0 degenerate Mixed A 2-(10eum/mol)c 426 T1(b)T2 TN Experiment (1FTit) 2201 55 K 00..05 Bi2Fe4O(cid:242)9 Bi4FOe5Ort1h3Fogonal degeneratewithcollinearA 0.0 0.5 1.0 1.5 0 100 200 300 400 500 600 -10 -5 0 5 10 Temperature (K) Velocity (mm/s) J43(cid:144)J33 FIG.2. (a)Temperaturedependenceoforderedmomentsobtained FIG. 3. Classical phase diagram of the Cairo Heisenberg model, fromneutrondiffraction.Errorbarsaresmallerthanthesymbolsize, withtwoFe1-Fe2couplings,J43andJ4(cid:48)3,andtwoFe1spinsoneach linesareguide-for-they-eyeonly.(b)Fitofthemagneticsusceptibil- four-foldsiteoftheCairolattice,asobtainedin[47]usingLyonsand ityusingexchangeparametersJ fromDFT.(c)Mo¨ssbauerspectra Kaplan’s[51]generalizationoftheLuttinger-Tiszamethod[52].The ij andtheirfits,asdescribedinthetext.Forfitparameters,see[47]. linesJ43=0andJ43=0correspondtodecoupledchains,andtheor- thogonalphasebecomesdegeneratewithinfiniteothergroundstates, includingthecollinearphasesAandBdiscussedin[47]. Thepar- tiallydisorderedcollinearphaseof[24],whichisrelevanttophase Mo¨ssbauer spectroscopy – The 57Fe Mo¨ssbauer spectra II of Fig. 1(e), is stabilized by quantum fluctuations in the corner (Fig.2c)wererecordedinthetemperaturerange55−300K around J =J(cid:48) =0. The line J =J(cid:48) maps to the model of 43 43 43 43 ina transmissionmode witha 57Co/Rh γ-ray source usinga [24] by rescaling J →J /2 and J(cid:48) →J(cid:48) /2. The two avail- 43 43 43 43 constantaccelerationspectrometerMS1104.Atroomtemper- ablecompoundsareshownbythefilledbluetriangle(basedonthe ature, the spectrum can be decomposed into 3 doublets with parametersof[25])andthefilledreddot(basedontheparameters the nearly 40:40:20 ratio of the intensities corresponding to reportedhere). theFe1,Fe2,andFe3positions,respectively[47]. Upon cooling below T , the spectra reveal an additional N splitting indicative of the magnetic ordering. However, the Thissetofexchangeparametersreproducesthesusceptibility spectrumat100K,inphaseIII,couldnotbeaccountedforby downto120K(Fig.2b)andpredictsTN (cid:39) 180Kinperfect acombinationofregularsextets. Wefoundthatabout20%of agreementwiththeexperiment[47]. thespectralintensitycorrespondstoanunresolvedsextetwith Ouranalysisoftheisotropicmodel[47]placesBi Fe O F 4 5 13 a very weak hyperfine splitting. This signal corresponds to deep inside the orthogonal phase of the classical phase dia- Fe3that,accordingtotheneutrondata,hasaverylowordered gram(Fig.3). Additionally, theinterlayerFe1–Fe3coupling momentaboveT . BelowT ,theFe3momentsincreaseand is much weaker than the couplings within the plane. There- 2 2 awell-resolvedsextetdevelops,asexpected. fore,oneexpectsthattheFe3spinsaremoresensitivetother- Thespectrumat55K(phaseIII)containsfivemagneticsex- mal fluctuations and decrease much faster than the spins on tetsthatseparateintothreegroups,Fe1 andFe1 ,Fe2 and Fe1andFe2[47],inagreementwithFig.2a. 1 2 1 Fe22,andFe3,asexpectedfromthemagneticstructure. The Besidesthesetwoaspects,therestoftheexperimentalbe- spectrum at 63K (phase II) is visually quite similar, but one havior, including the formation of phases II and III, is com- of the Fe2 components is strongly broadened indicating the pletely unexpected on the basis of the isotropic model. First reducedorderedmomentonFe21. of all, the two phases I and III, which have opposite vector Microscopic description – We begin with the isotropic chiralitiesχ, aredegenerate. Second, thesystemisfaraway (cid:80) modeldefinedbythespinHamiltonianH= J S ·S , from any collinear phase of the model (Fig. 3), so there is a (cid:104)ij(cid:105) ij i j where the summation is over nearest-neighbor spins-5/2, S largeenergybarrieragainstanythermally-drivenstabilization i and S , and J are the exchange parameters. Their ab- ofcollinearity(wehaveinfactcheckedandexcludedthesce- j ij solute values are obtained from density-functional (DFT) narioofthermalstabilizationbyclassicalMonteCarlosimu- band-structure calculations performed in the FPLO [48] and lations). Third, the scenario of quantum fluctuations driving VASP [49, 50] codes using the DFT+U procedure [47]. The thecollinearphaseishighlyunlikelyaswell:Theonsetofthe couplingswereextractedfromtotalenergiesofcollinearspin collinear phase is roughly taking place when the spin length configurations. IncontrasttoRef.[32],theywerefurtherre- correction δS from quadratic spin waves approaches the full finedbyfittingexperimentalmagneticsusceptibilitywithclas- valueS=5/2. AccordingtoFig.4ofRef.[24],thecollinear sicalMonte-CarlosimulationsfortheHeisenbergspinmodel. phaseforS = 5/2(ifany)onsetswaybelowJ /J =0.1, 43 33 WefindJ =116K,J =38K,andJ(cid:48) =57K.TheFe1– and the actual number should be further divided by two, be- 33 43 43 Fe3 interaction that mediates the 3D ordering, is J =8K. causeherewehavetwoFe1sitesateachfour-foldsite.Atany ⊥ 4 1.5 nalstructurearenotallowed,becauseorthogonalityisdefined 1.0 Fe11 48.2o byJij’s,whichareatleasttwoordersofmagnitudestronger thantheanisotropy. Thiscompetitionbetweentheorthogonal 0.5 structure and individual single-ion anisotropies explains the Fe1 unexpected difference in the magnetic moments on the Fe1 0.0 2 1 andFe1 sitesinphaseIII.Indeed,theFe1 momentislarger, 2 1 1.5 becauseitpointsapproximatelyalongthepreferreddirection gy (K) 1.0 Fe21 5.0o 1(t0h0eKd)e.pOarntutrheeforothmerthheanpdr,etfheerremdodmireencttioonnFies1∆ϕis f=ar a5w◦aayt er 0.5 Fe2 2 n 2 fromitspreferreddirection(∆ϕ=47◦)andthussmaller. E 0.0 Asideeffectoftheseenergyconsiderationsisthatthechi- 8 rality changes from χ=+c in phase I to χ=−c in phase Fe3 6 1 III.Thecontinuoustransformationbetweenthesetwophases 4 necessitatestheintermediatecollinearphaseIIthatexistsina 2 Fe3 narrowtemperaturerangeonly. 0 90o 2 Discussion – The main picture emerging from the experi- 0 30 60 90 120 150 180 mental data presented here is that the interlayer Fe3 spins in j(deg) Bi Fe O F play a dual role, on one hand mediating the 3D 4 5 13 orderingandontheotherdrivingareorientationoftheorder FIG. 4. In-plane single-ion anisotropy energies for the Fe1, Fe2, in the planes. While details of this transition require further andFe3sites.Thearrowsdenotepreferredspindirections.Onlythe dedicatedtheoreticalwork,ontheexperimentalsidetheeffect Fe3sitesarecompatiblewiththeorthogonalstructure,becausetheir preferred directions are at 90◦ to each other. For the Fe1 and Fe2 oftheFe3spinsiscrucialforthedesignofnewCairo-lattice sites,theanglebetweenpreferreddirectionsoftheneighboringsites magnets, because interlayer magnetic sites, which are often is largely different from 90◦. Note that we use Fe3 and Fe3 for introducedforthesakeofstabilizingthecrystalstructure[53], 1 2 thoseFe3sitesthatarecoupledtoFe11andFe12,respectively. The arenotinnocentandinfactplaydecisiveroleforthemagnetic angleϕismeasuredbetweenthemagneticmomentandtheam-axis, orderwithintheCairoplanes. andallcurvesareperiodic,E(ϕ+180◦)=E(ϕ). ThesequenceoftransitionsinBi Fe O Fiscloselyrem- 4 5 13 iniscent of the consecutive transitions in RMn O , where 2 5 an intermediate collinear phase separates two non-collinear rate, our ab initio parameters are far away from the stability states.However,thiscollinearphase[37]isdifferentfromour regionofthecollinearphase. SophaseIIisnotathermody- phaseII,becauseitdoesnotshowthecharacteristicreduction namically stable phase of the isotropic model, but should be in the ordered moment on part of the (Fe2) sites. Instead, it thoughtofasanintermediatestepofareorientationtransition mayberelatedtothecollinearphasesAandBofFig.3. fromItoIII,drivenbyanisotropy. Further investigation of the collinear phase II in Effect of anisotropy – To unravel the origin of this re- Bi Fe O F would be interesting. For example, an exter- orientation transition, we must consider anisotropic terms. 4 5 13 nal magnetic field may influence the subtle balance between Dzyaloshinsky-Moriya (DM) couplings are forbidden by thetwoorthogonalstatesandleadtonewpartiallydisordered symmetry for J bonds, but are allowed for J and J(cid:48) 33 43 43 statesresemblingphaseII.Giventhechiralnatureofthemag- bonds. However,theanalysisofsymmetryrelationstogether netic structures in phases I and III, detailed investigation of withtheexperimentalmagneticstructuresinphasesIandIII theirdielectricpropertiesisalsowarranted. showsthattheoverallcontributionofthec-componentsofthe DMvectorscancelsout, hencetheDMvectorsdonotdeter- Acknowledgment – We are thankful to Prof. J.-M. Perez- minethechirality. Mato for valuable discussion on the magnetic structure. DF andAAaregratefultotheRussianScienceFoundation(grant Incontrast,single-ionanisotropies(Fig.4)giveustheright 14-13-00680) for support. AT was supported by the Federal insights. WefirstnotethattheanisotropyofFe3ismorethan Ministry for Education and Research through the Sofja Ko- 5timesstrongerthanthatofFe1andFe2.Therefore,Fe3with itspreferreddirectionsatϕ = 0◦ and90◦ putstheFe1spins valevskaya Award of Alexander von Humboldt Foundation. This work is based on experiments performed at the Swiss along a and b . This anisotropy does not choose the chi- m m spallationneutron sourceSINQ,Paul ScherrerInstitut, Villi- rality,buttheanisotropyofFe2prefersthestructureofphase gen,Switzerland. Iwithχ=+c,asconfirmedbyadirectenergyminimization. AboveT ,inphaseIII,thepreferreddirectionofFe3plays 2 norole,andtheFe1andFe2spinsarelefttoformanorthogo- nalstructure,eventhoughtheirpreferreddirectionsdonotfa- vorit: forexample,thepreferreddirectionsofFe11 andFe12 ∗ [email protected] differ by 48.2◦ only, whereas Fe21 and Fe22 spins prefer to † [email protected] be nearly collinear. However, deviations from the orthogo- ‡ [email protected] 5 [1] IntroductiontoFrustratedMagnetism:Materials,Experiments, theS =1/2HeisenbergantiferromagnetontheCairopentagon Theory(SpringerSeriesinSolid-StateSciences,Berlin,2011). lattice,”J.Phys.Soc.Jpn.83,053702(2014). [2] FrustratedSpinSystems,2nded.(WorldScientific,2013). [27] M.Isoda,H.Nakano, andT.Sakai,“Frustration-inducedmag- [3] L. Balents, “Spin liquids in frustrated magnets,” Nature 464, netic properties of the spin-1/2 Heisenberg antiferromagnet 199–208(2010). on the Cairo pentagon lattice,” J. Phys. Soc. Jpn. 83, 084710 [4] P.W.Anderson,“Resonatingvalencebonds: Anewkindofin- (2014). sulator?”Mat.Res.Bull8,153–160(1973). [28] N.Shamir,E.Gurewitz, andH.Shaked,“Themagneticstruc- [5] S.Yan,D.A.Huse, andS.R.White,“Spin-liquidgroundstate ture of Bi Fe O – analysis of neutron diffraction measure- 2 4 9 ofthes = 1/2kagomeHeisenbergantiferromagnet,”Science ments,”ActaCryst.A34,662–666(1978). 332,1173–1176(2011). [29] A.K.Singh,S.D.Kaushik,B.Kumar,P.K.Mishra,A.Veni- [6] S.Depenbrock,I.P.McCulloch, andU.Schollwo¨ck,“Nature madhav,V.Siruguri, andS.Patnaik,“Substantialmagnetoelec- of the spin-liquid ground state of the S = 1/2 Heisenberg triccouplingnearroomtemperatureinBi Fe O ,”Appl.Phys. 2 4 9 model on the kagome lattice,” Phys. Rev. Lett. 109, 067201 Lett.92,132910(2008). (2012). [30] E. Ressouche, V. Simonet, B. Canals, M. Gospodinov, and [7] T.-H.Han,J.S.Helton,S.Chu,D.G.Nocera,J.A.Rodriguez- V.Skumryev,“Magneticfrustrationinaniron-basedCairopen- Rivera,C.Broholm, andY.S.Lee,“Fractionalizedexcitations tagonallattice,”Phys.Rev.Lett.103,267204(2009). in the spin-liquid state of a kagome-lattice antiferromagnet,” [31] M.N.Iliev,A.P.Litvinchuk,V.G.Hadjiev,M.M.Gospodinov, Nature(London)492(2012). V.Skumryev, andE.Ressouche,“Phononandmagnonscatter- [8] A. Kitaev, “Anyons in an exactly solved model and beyond,” ingofantiferromagneticBi Fe O ,”Phys.Rev.B81,024302 2 4 9 AnnalsofPhysics321,2–111(2006). (2010). [9] L. Savary and L. Balents, “Quantum spin liquids: a review,” [32] A. M. Abakumov, D. Batuk, A. A. Tsirlin, C. Prescher, Rep.Prog.Phys.80,016502(2017). L.Dubrovinsky,D.V.Sheptyakov,W.Schnelle,J.Hadermann, [10] M. J. P. Gingras and P. A. McClarty, “Quantum spin ice: a and G. Van Tendeloo, “Frustrated pentagonal Cairo lattice in searchforgaplessquantumspinliquidsinpyrochloremagnets,” the non-collinear antiferromagnet Bi Fe O F,” Phys. Rev. B 4 5 13 Rep.Prog.Phys.77,056501(2014). 87,024423(2013). [11] C. Castelnovo, R. Moessner, and S. L. Sondhi, “Magnetic [33] M.G.Rozova,V.V.Grigoriev,I.A.Bobrikov,D.S.Filimonov, monopolesinspinice,”Nature451,42–45(2008). K.V.Zakharov, O.S.Volkova, A.N.Vasiliev, E.V.Antipov, [12] C.L.Henley,“TheCoulombphaseinfrustratedsystems,”Ann. A.A.Tsirlin, andA.M.Abakumov,“Synthesis,structureand Rev.Condens.MatterPhys.1,179–210(2010). magneticorderingofthemullite-typeBi Fe Cr O solidso- 2 4−x x 9 [13] J. Rehn and R. Moessner, “Maxwell electromagnetism as an lutionswithafrustratedpentagonalCairolattice,”DaltonTrans. emergentphenomenonincondensedmatter,”Phil.Trans.Royal 45,1192–1200(2016). Soc.LondonA374(2016),10.1098/rsta.2016.0093. [34] S.R.Mohapatra, A.Swain, C.S.Yadav, S.D.Kaushik, and [14] S.-W. Cheong and M. Mostovoy, “Multiferroics: a magnetic A. K. Singh, “Unequivocal evidence of enhanced magnetodi- twistforferroelectricity,”NatureMaterials6,13–20(2007). electriccouplinginGd3+ substitutedmultiferroicBi Fe O ,” 2 4 9 [15] T.Arima,“Spin-drivenferroelectricityandmagneto-electricef- RSCAdv.6,112282–112291(2016). fects in frustrated magnetic systems,” J. Phys. Soc. Jpn. 80, [35] K. Saito and K. Kohn, “Magnetoelectric effect and low- 052001(2011). temperaturephasetransitionsofTbMn O ,”J.Phys.:Condens. 2 5 [16] Y.Tokura,S.Seki, andN.Nagaosa,“Multiferroicsofspinori- Matter7,2855(1995). gin,”Rep.Prog.Phys.77,076501(2014). [36] N.Hur, S.Park, P.A.Sharma, J.S.Ahn, S.Guha, andS-W. [17] Thisismostlybecauseofthewell-knownincompatibilityofthe Cheong,“Electricpolarizationreversalandmemoryinamul- five-foldsymmetrywithlatticeperiodicity. tiferroicmaterialinducedbymagneticfields,”Nature429,392 [18] R.MoessnerandS.L.Sondhi,“Isingmodelsofquantumfrus- (2004). tration,”Phys.Rev.B63,224401(2001). [37] G.R.Blake,L.C.Chapon,P.G.Radaelli,S.Park,N.Hur,S-W. [19] V.Urumov,“ExactsolutionoftheIsingmodelonapentagonal Cheong, andJ.Rodr´ıguez-Carvajal,“Spinstructureandmag- lattice,”J.Phys.A35,7317(2002). neticfrustrationinmultiferroicRMn O (R =Tb, Ho, Dy),” 2 5 [20] K.S.Raman,R.Moessner, andS.L.Sondhi,“SU(2)-invariant Phys.Rev.B71,214402(2005). spin-1 Hamiltonians with resonating and other valence bond [38] C.Vecchini, L.C.Chapon, P.J.Brown, T.Chatterji, S.Park, 2 phases,”Phys.Rev.B72,064413(2005). S-W. Cheong, and P. G. Radaelli, “Commensurate magnetic [21] A.Jagannathan, B.Motz, andE.Vedmedenko,“Novelprop- structuresofRMn O (R=Y,Ho,Bi)determinedbysingle- 2 5 erties of frustrated low-dimensional magnets with pentagonal crystalneutrondiffraction,”Phys.Rev.B77,134434(2008). symmetry,”Phil.Mag.91,2765–2772(2011). [39] A.B.Harris,A.Aharony, andO.Entin-Wohlman,“Orderpa- [22] A.Ralko,“PhasediagramoftheCairopentagonalXXZspin- rametersandphasediagramofmultiferroicRMn O ,”Phys. 2 5 1 magnet under a magnetic field,” Phys. Rev. B 84, 184434 Rev.Lett.100,217202(2008). 2 (2011). [40] A.B.Sushkov,M.Mostovoy,R.Valde´sAguilar,S.-W.Cheong, [23] M. Rojas, O. Rojas, and S. M. de Souza, “Frustrated Ising and H. D. Drew, “Electromagnons in multiferroic RMn O 2 5 modelontheCairopentagonallattice,”Phys.Rev.E86,051116 compounds and their microscopic origin,” J. Phys.: Condens. (2012). Matter20,434210(2008). [24] I.Rousochatzakis,A.M.La¨uchli, andR.Moessner,“Quantum [41] J.W.Kim,S.Y.Haam,Y.S.Oh,S.Park,S.-W.Cheong,P.A. magnetism on the Cairo pentagonal lattice,” Phys. Rev. B 85, Sharma, M. Jaime, N. Harrison, Jung Hoon Han, G.-S. Jeon, 104415(2012). P. Coleman, and K. H. Kim, “Observation of a multiferroic [25] Z.V.PchelkinaandS.V.Streltsov,“Abinitioinvestigationof criticalendpoint,”PNAS106,15573–15576(2009). theexchangeinteractionsinBi Fe O : TheCairopentagonal [42] K.Cao,G.-C.Guo,D.Vanderbilt, andL.He,“First-principles 2 4 9 latticecompound,”Phys.Rev.B88,054424(2013). modeling of multiferroic RMn O ,” Phys. Rev. Lett. 103, 2 5 [26] H.Nakano,M.Isoda, andT.Sakai,“Magnetizationprocessof 257201(2009). 6 [43] K.MommaandF.Izumi,“VESTA3forthree-dimensionalvisu- nallocal-orbitalminimum-basisband-structurescheme,”Phys. alizationofcrystal,volumetricandmorphologydata,”J.Appl. Rev.B59,1743–1757(1999). Crystallogr.44,1272–1276(2011). [49] G.KresseandJ.Furthmu¨ller,“Efficiencyofab-initiototalen- [44] R. Nath, K. M. Ranjith, J. Sichelschmidt, M. Baenitz, Y. Sk- ergycalculationsformetalsandsemiconductorsusingaplane- ourski,F.Alet,I.Rousochatzakis, andA.A.Tsirlin,“Hindered wave basis set,” Computational Materials Science 6, 15 – 50 magneticorderfrommixeddimensionalitiesinCuP O ,”Phys. (1996). 2 6 Rev.B89,014407(2014). [50] G. Kresse and J. Furthmu¨ller, “Efficient iterative schemes for [45] V. Pet˘r´ıc˘ek, M. Dus˘ek, and L. Palatinus, “Crystallographic abinitiototal-energycalculationsusingaplane-wavebasisset,” computingsystemJANA2006:Generalfeatures,”Z.Krist.229, Phys.Rev.B54,11169–11186(1996). 345–352(2014). [51] D. H. Lyons and T. A. Kaplan, “Method for determining [46] B.J.Campbell,H.T.Stokes,D.E.Tanner, andD.M.Hatch, ground-statespinconfigurations,”Phys.Rev.120,1580–1585 “ISODISPLACE:aweb-basedtoolforexploringstructuraldis- (1960); T.A.KaplanandN.Menyuk,“Spinorderinginthree- tortions,”J.Appl.Cryst.39,607–614(2006). dimensionalcrystalswithstrongcompetingexchangeinterac- [47] See Supplemental material at [...] for: i) Neutron diffraction tions,”Phil.Mag.87,3711–2785(2007). patternsanddetailsoftherefinement;ii)fittingparametersfor [52] J.M.LuttingerandL.Tisza,“Theoryofdipoleinteractionin theMo¨ssbauerspectra;iii)detailsofelectronicstructurecalcu- crystals,”Phys.Rev.70,954–964(1946). lations;iv)Detailsonthederivationofthephasediagrampre- [53] J. Cumby, R. D. Bayliss, F. J. Berry, and C. Greaves, “Syn- sented in Fig. 3; v) Theoretical evidence for the qualitatively theticanaloguesofFe(II)–Fe(III)mineralscontainingapentag- differentT-dependenceoftheFe3andFe1/Fe2moments. onal’Cairo’magneticlattice,”DaltonTrans.45,11801–11806 [48] K. Koepernik and H. Eschrig, “Full-potential nonorthogo- (2016).