ebook img

Coherent sources of XUV radiation : soft X-ray lasers and high-order harmonic generation PDF

407 Pages·2005·7.187 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Coherent sources of XUV radiation : soft X-ray lasers and high-order harmonic generation

Pierre Jaegle´ Coherent Sources of XUV Radiation Soft X-Ray Lasers and High-Order Harmonic Generation With332Illustrations PierreJaegle´ DirecteurdeRechercheEme´riteauCentreNationaldelaRechercheScientifique X-RayMatterInteractionLaboratory(LIXAM) Universite´Paris-Sud 91405Orsay France LibraryofCongressControlNumber:2005934933 ISBN10:0-387-23007-6 ISBN13:978-0387-23007-8 Printedonacid-freepaper. (cid:1)C 2006SpringerScience+BusinessMedia,Inc. Allrightsreserved.Thisworkmaynotbetranslatedorcopiedinwholeorinpartwithoutthewritten permission of the publisher (Springer Science+Business Media, Inc., 233 Spring Street, New York, NY10013,USA),exceptforbriefexcerptsinconnectionwithreviewsorscholarlyanalysis.Usein connectionwithanyformofinformationstorageandretrieval,electronicadaptation,computersoftware, orbysimilarordissimilarmethodologynowknownorhereafterdevelopedisforbidden. Theuseinthispublicationoftradenames,trademarks,servicemarksandsimilarterms,eveniftheyare notidentifiedassuch,isnottobetakenasanexpressionofopinionastowhetherornottheyaresubject toproprietaryrights. PrintedintheUnitedStatesofAmerica. (TB/EB) 9 8 7 6 5 4 3 2 1 springeronline.com To Rachel Acknowledgments I am grateful to my colleagues Clary Mo¨ller and Pierre Dhez for their help in the preparation of this book. The dynamism of the X-Ray Laser Research GroupofLIXAMhasprovidedgreatencouragementinthecompletionofthis work. Contents Part I Introduction to Coherent Extreme-Ultraviolet and Soft X-Ray Sources 1 Short Survey of XUV Emission Mechanisms and Sources............... 3 1.1 Radiation Transfer Through Matter, Opacity, and Gain......... 7 1.2 Transfer Equation, Absorption, and Gain............................. 8 1.3 Profile Functions.............................................................. 13 1.4 Line Narrowing................................................................ 14 1.5 Atomic Level Population Densities...................................... 17 1.6 Source Brightness and Number of Photons per Mode............. 19 2 XUV Optics........................................................................... 23 2.1 XUV Optical Constants.................................................... 23 2.2 Absorption, Reflection, and Refraction of XUV Radiation...... 28 2.3 Grazing Incidence Optics................................................... 34 2.4 Multilayer Mirrors............................................................ 36 3 Coherent XUV Radiation Beams............................................... 41 3.1 Interferences and Degree of Coherence................................. 41 3.2 Modes of Free Radiation Field............................................ 48 3.3 Three Ways of Producing Coherent XUV Radiation Beams.... 52 References.............................................................................. 55 Part II State of the Art and Prospect of X-Ray Lasers 4 Beginnings............................................................................. 59 4.1 Experiments.................................................................... 59 4.2 Pumping Mechanisms....................................................... 63 x Contents 5 General Features of X-Ray Lasers.............................................. 69 5.1 Survey of Laser-Produced Plasma Physics............................ 69 5.1.1 Main Parameters Related to Plasma Expansion........... 69 5.1.2 Atomic Physics in the Plasma Corona........................ 72 5.2 X-Ray Laser Configurations............................................... 74 5.2.1 X-Ray Lasers Pumped by Lasers............................... 74 5.2.2 Multiple Target Systems.......................................... 78 5.2.3 Optics for the Production of Line Focused Plasmas...... 80 5.2.4 Capillary-Discharge XUV Laser................................ 83 5.2.5 XUV Laser Cavity Issues......................................... 84 5.3 Diagnostics of X-Ray Laser Media...................................... 88 5.3.1 Plasma Imaging...................................................... 88 5.3.2 Temperature and Density Diagnostics........................ 92 6 Propagation of XUV Laser Beams.............................................. 99 6.1 Beam Refraction.............................................................. 101 6.2 From Small-Signal Gain to Saturation................................. 111 6.3 Coherence Building.......................................................... 120 6.4 Coherence Measurements................................................... 129 6.4.1 Coherence Characterization...................................... 129 6.4.2 Interferometric Methods.......................................... 130 6.4.3 Diffractometry........................................................ 133 7 Saturated XUV Lasers............................................................. 137 7.1 Gain Predictions for the Collisional-Excitation Pumping Scheme........................................................................... 139 7.2 Single Pump-Pulse of Nanosecond Duration......................... 144 7.2.1 Ne-Like Selenium Laser........................................... 144 7.2.2 Ne-Like Ge Laser (Saturation, Coherence, Polarization) 147 7.2.3 Ne-Like Yttrium Laser............................................. 160 7.2.4 Ne-Like Silver Laser................................................ 162 7.2.5 Ni-Like Ion Lasers................................................... 162 7.3 Pumping with Prepulses.................................................... 163 7.3.1 General Characteristics of Prepulse Influence on Pumping........................................................... 164 7.3.2 Prepulsed Ne-Like Zinc Laser................................... 171 7.3.3 Prepulsed Ne-Like Germanium Laser......................... 176 7.3.4 Ne-Like Lasers with Low Z Elements......................... 178 7.3.5 Prepulsed Ni-Like Lasers: Sn, Sm, Dy, Pd, Ag............. 182 7.4 Transient Collisional Excitation (TCE) Scheme of Pumping.... 193 7.4.1 Traveling Wave Implementation................................ 196 7.4.2 TCE Ne-Like Titanium Laser (32.63 nm)................... 201 7.4.3 TCE Ne-Like Iron Laser (25.5 nm)............................ 205 7.4.4 TCE Ni-Like Tin Laser (11.9 nm)............................. 205 7.4.5 TCE Ni-Like Germanium Laser (19.6 nm).................. 207 Contents xi 7.4.6 TCE Ni-Like Molybdenum Laser (18.9 nm)................ 208 7.4.7 TCE Ni-Like Silver Laser (13.9 nm)........................... 211 7.5 Fast Capillary Discharge X-Ray Laser................................. 215 7.5.1 Discharge Characteristics......................................... 216 7.5.2 Small-Signal Gain, Saturation, and Output of the Ne-Like Argon Laser............................................... 218 7.5.3 Coherence.............................................................. 222 7.5.4 New Lasing Materials.............................................. 223 7.6 Optical-Field-Ionization Lasers........................................... 224 8 Recombination Lasers.............................................................. 235 8.1 Long Pump Pulses............................................................ 235 8.1.1 Hydrogen-Like Ions................................................. 236 8.1.2 Lithium-Like Ions................................................... 244 8.1.3 Gain–Length Product Limitation.............................. 250 8.2 Short and Ultrashort Pump Pulses...................................... 251 9 Schemes for Future Soft X-Ray Lasers........................................ 255 9.1 Inner Shell Photopumping................................................. 255 9.2 Free Electron Lasers......................................................... 256 References.............................................................................. 257 Part III High Harmonic Generation 10 Introduction.......................................................................... 277 11 Survey of the Theoretical Background....................................... 281 11.1 Atoms in Strong Field.................................................... 281 11.2 Phase-Matching............................................................ 286 12 General Characteristics of High-Order Harmonic Emission........... 291 12.1 Coherence.................................................................... 291 12.1.1 Coherence Control............................................ 291 12.1.2 Spatial Coherence Measurements........................ 294 12.1.3 Temporal Coherence......................................... 300 12.2 Conversion Efficiency..................................................... 303 12.2.1 Scaling Law in the Plateau Region...................... 304 12.2.2 Influence of Atomic Density............................... 305 12.2.3 Influence of the Length of the Pumped Medium.... 308 12.2.4 Influence of the Diameter of Apertured Beam....... 311 12.2.5 Phase-Matching by Wave Guiding....................... 311 12.2.6 Emitters of Complex Structure: Molecules, Clusters, Solid–Vacuum Interfaces....................... 316 xii Contents 12.2.7 Two-Color High Harmonic Generation................. 331 12.2.8 Tunability....................................................... 339 References.................................................................. 344 Part IV A Survey of Coherent XUV Sources Applications 13 Introduction.......................................................................... 353 13.1 Interferometry of Laser-Created Plasma........................... 354 13.2 Interferometry and Shadography of Exploding Wire Plasma........................................................................ 357 13.3 Reflectometry of Solid Materials...................................... 359 14 Time-Resolution About 100 Picoseconds................................... 361 14.1 Characterization of Dense Plasmas.................................. 361 14.1.1 Density Measurements up to (cid:1)1021 Electrons cm−3................................................ 361 14.1.2 Colliding Plasmas............................................. 363 14.1.3 Soft X-Ray Radiographic Probing of Laser-Irradiated Thin Si Foils............................. 364 14.2 Atomic Physics............................................................. 366 14.2.1 Lifetime Measurement of Excited He States.......... 366 14.2.2 Absolute Photo-Ionization Cross-Section of Excited He-States......................................... 367 14.3 Material Properties....................................................... 369 14.3.1 Snapshots of Intense Electric Field Effects on Metal Surface.............................................. 369 14.3.2 CsI Crystal Luminescence Induced by Very Intense XUV Flux..................................... 373 14.4 Production of Highly Focused XUV Beams....................... 374 14.4.1 Method of Wave Front Characterization............... 375 14.4.2 Measurement of the Spatial Intensity Distribution of a Soft X-Ray Laser Beam............................... 376 15 Time-Resolution About One Picosecond.................................... 379 15.1 Picosecond X-Ray Laser Interferometry............................ 379 15.2 Material Probe at the Picosecond Scale............................ 381 15.2.1 Study of the Surface Domain–Structure of Ferroelectric BaTiO ..................................... 381 3 15.2.2 Time-Resolved Measurement of Material Scintillation..................................................... 383 15.2.3 Single-Shot Probe of Photoelectron Emission........ 384 Contents xiii 16 Subfemtosecond Time-Resolution............................................. 387 16.1 Frequency-Domain Interferometry Applied to Electron-Density Measurements................................... 387 16.2 Generation of Attosecond Pulses..................................... 391 17 Future Prospects................................................................... 395 17.1 Nonlinear XUV Optics................................................... 395 17.2 Microlithography........................................................... 395 17.3 Biological Applications................................................... 396 References............................................................................ 397 Index......................................................................................... 403 1. Short Survey of XUV Emission Mechanisms and Sources Theradiationrangeofphotonenergycomprisedbetween,letussay,20eVand 600 eV is known by the names of extreme ultraviolet, soft X-ray or XUV ra- diation.Thisfluctuatingdesignationreflectsthevariousoriginsofaradiation pattern which, in other respects, exhibits singular optical properties marking itofffromfar-ultraviolet,ononeside,andX-rays,ontheother.Thepenetra- tion length of XUV radiation is very small in almost all materials—generally lessthan1µm.Thereispracticallynoreflectiononopticalsurfacesundernor- mal incidence and, in addition, wavelength is too large to make use of Bragg reflection on natural crystals. These peculiarities made the development of instrumentationforXUVstudiesmoredifficultthanforothersspectralfields, afactwhichhasbeenprejudicialtotheadvanceofXUVresearch.Duringthe last decades important progress, especially in XUV optics, became possible with the help of synchrotron radiation sources. AsillustratedinFigure1.1,theenergyofthetransitionsoccurringbetween twoupperelectronicshellsofatoms,remainsofaconstantorderofmagnitude as the atomic number increases. For instance, the L –K transition of boron II (Z =5), the M –L transition of silicon (Z =14), the N –M transition of I II I II zinc (Z =30), the O −N transition of tin (Z =50), all have an energy of I II theorderof100eV,whichcorrespondstoawavelengthof∼12nm.Therefore B atoms ionized in K-shell, Si atoms ionized in L-shell, Zn atoms ionized in M-shell,andsoon,willbesourcesofsoftX-rayemission(seeforinstance[1]). Onecanaskthequestionwhetherthisprocesscanprovideexcitationden- sities such that population inversions might appear between lower and upper levels. This would open the way to neutral atom photo-pumped XUV lasers. But attempts at implementing X-ray photo-pumping have not yet succeeded since a very large X-ray flux is necessary to pump the lasing material, while the small aperture of XUV optics makes it difficult to concentrate the flux on the target. XUV radiation is also emitted by electron transitions between the optical levelsofmultichargedions.Theword“optical”referstotheemptylevelsabove the ground state, that is to say the levels otherwise involved in the visible or

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.