ebook img

"COBRA-FLX: A Core Thermal-Hydraulic Analysis Code Topical Report". PDF

725 Pages·2010·6.56 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview "COBRA-FLX: A Core Thermal-Hydraulic Analysis Code Topical Report".

ANP-10311NP Revision 0 COBRA-FLX: A Core Thermal-Hydraulic Analysis Code Topical Report March 2010 AREVA NP Inc. (c) 2010 AREVA NP Inc. Copyright © 2010 AREVA NP Inc. All Rights Reserved AREVA NP Inc. ANP-10311NP COBRA-FLX: A Core Thermal-Hydraulic Analysis Code Topical Report Page i Nature of Changes Section(s) Item or Page(s) Description and Justification AREVA NP Inc. ANP-10311NP COBRA-FLX: A Core Thermal-Hydraulic Analysis Code Topical Report Page ii Contents Page List of Tables .............................................................................................................................iv List of Figures ..............................................................................................................................v Nomenclature ............................................................................................................................xxi 1.0 Introduction....................................................................................................................1-1 1.1 Code Applications..............................................................................................1-5 1.2 Requested Code Review and Approval..............................................................1-6 1.3 References.........................................................................................................1-9 2.0 Problem Formulation and Solution.................................................................................2-1 2.1 Mixture Balance Equations.................................................................................2-1 2.1.1 Two-Phase Flow Definitions...................................................................2-1 2.1.2 Local-Instantaneous Navier-Stokes Equations.......................................2-7 2.1.3 Averaging Operators.............................................................................2-12 2.2 Subchannel Formulation of the Basic Equations..............................................2-15 2.2.1 Fuel Rod Array Geometry.....................................................................2-17 2.2.1.1 Lateral scaling of crossflow resistance factor...........................2-22 2.2.1.2 Lateral scaling of turbulent mixing............................................2-22 2.2.1.3 Lateral scaling of the lateral momentum parameter..................2-23 2.2.2 Subchannel Mass Conservation Equation............................................2-24 2.2.2.1 Diversion Crossflow..................................................................2-26 2.2.2.2 Turbulent Interchange...............................................................2-26 2.2.3 Subchannel Momentum Balance Equations.........................................2-27 2.2.3.1 Axial Momentum Equation........................................................2-27 2.2.3.2 Lateral Momentum Balance......................................................2-30 2.2.4 Subchannel Energy Conservation Equation.........................................2-32 2.2.5 COBRA-FLX Basic Equations..............................................................2-35 2.2.5.1 Mass Conservation...................................................................2-35 2.2.5.2 Momentum Balance Equations.................................................2-35 2.2.5.3 Energy Conservation................................................................2-37 2.2.5.4 Equation of State......................................................................2-39 2.3 COBRA-FLX Numerical Solution Methodology................................................2-40 2.3.1 SCHEME Solution Methods..................................................................2-43 2.3.1.1 COBRA-FLX Finite-Difference Equations.................................2-43 2.3.1.2 General Computational Procedure...........................................2-54 2.3.1.3 Crossflow SCHEME Solution Logic..........................................2-59 2.3.1.4 Pressure SCHEME Solution Logic............................................2-61 2.3.2 Pressure-Velocity (PV) Solution Method..............................................2-66 2.3.2.1 Thermal-Hydraulic Model Equations.........................................2-67 2.3.2.2 Control Volume Equations........................................................2-72 2.3.2.3 Closure Relationships...............................................................2-90 AREVA NP Inc. ANP-10311NP COBRA-FLX: A Core Thermal-Hydraulic Analysis Code Topical Report Page iii 2.3.2.4 PV Numerics.............................................................................2-92 2.4 Boundary Conditions......................................................................................2-119 2.4.1 Inlet Enthalpy / Inlet Temperature.......................................................2-119 2.4.2 Power .................................................................................................2-119 2.4.3 System Pressure................................................................................2-121 2.4.4 Exit Pressure Distribution...................................................................2-121 2.4.5 Inlet Flow............................................................................................2-122 2.4.6 Transient Forcing Functions...............................................................2-122 2.5 References.....................................................................................................2-123 3.0 Code Structure And Flow Logic Description..................................................................3-1 4.0 Subroutine Description...................................................................................................4-1 5.0 Verification and Validation..............................................................................................5-1 5.1 Conservation of Mass and Energy.....................................................................5-2 5.2 Experimental Validation of the Fluid Flow Solution............................................5-4 5.2.1 Inter-Bundle Diversion Cross-Flow Tests...............................................5-4 5.2.2 MARIGNAN Crossflow Tests................................................................5-12 5.3 Experimental Validation of Empirical Correlations............................................5-18 5.3.1 Critical Heat Flux Correlations..............................................................5-19 5.3.2 Validity of Steady-State Critical Heat Flux (CHF) Correlations in Transient Applications..................................................5-19 5.4 Comparisons of Solution Algorithms (Solution Schemes)................................5-21 5.5 Modeling Size...................................................................................................5-27 5.6 Heat Transfer Package....................................................................................5-28 5.7 Comparison of Fluid Flow Solution to Other Subchannel codes......................5-32 5.7.1 Steady-State Comparisons to Other Codes.........................................5-32 5.7.1.1 2-Channel Calculations with No Crossflow...............................5-32 5.7.1.2 38-Channel Calculations With Crossflow..................................5-35 5.7.1.3 Examination of Void Model Impacts Between Codes...............5-39 5.7.2 Transient Comparisons with Other Codes............................................5-41 5.7.2.1 4 Pump Coastdown Transient...................................................5-42 5.7.2.2 Locked Rotor Transient.............................................................5-48 5.7.2.3 Main Steam Line Break Transient.............................................5-49 5.8 Verification and Validation Conclusions...........................................................5-50 5.9 References.......................................................................................................5-52 AREVA NP Inc. ANP-10311NP COBRA-FLX: A Core Thermal-Hydraulic Analysis Code Topical Report Page iv List of Tables Page Table 1-1: The Extent of the COBRA-FLX Review and Approval Requests.............................1-7 Table 1-2: Empirical Correlation Application for Requested Review and Approval..................1-8 Table 5-1: Example of COBRA-FLX Heat and Exit Mass Balance Errors................................5-3 Table 5-2: Summary of COBRA-FLX Predictions Using the SCHEME-Pressure (P) and Pressure-Velocity (PV) Solution Methods versus Test Values for IBDCF Tests......................................................................................................5-7 Table 5-3: Summary of COBRA-FLX Predictions Using the Pressure-Velocity (PV) Solution Methods versus Test Values for the Severe Inlet Flow Asymmetry IBDCF DCF Tests................................................................................5-8 Table 5-4: DNBR Comparison During a 4 Pump Coastdown Using the P and PV Solution Methods..................................................................................................5-23 Table 5-5: Statistics for the P and PV Based Predictions for Subchannel Enthalpies.............................................................................................................5-26 Table 5-6: Minimum DNBR Predictions for Various Core Model Sizes for a 4 Pump Coastdown .................................................................................................5-28 Table 5-7: COBRA-FLX Heat Transfer Modes.......................................................................5-29 Table 5-8: Summary of DNBR Comparison for the 12-Channel Model for the 4 Pump Coastdown .................................................................................................5-43 Table 5-9: COBRA-FLX and LYNXT Minimum DNBR Sensitivity to Modeling Parameters for the 4 Pump Coastdown................................................................5-45 Table 5-10: Summary of DNBR Comparison for the 12-Channel Model for the Locked Rotor ........................................................................................................5-48 Table 5-11: COBRA-FLX and LYNXT Minimum DNBR Sensitivity to Modeling Parameters for the Locked Rotor..........................................................................5-49 Table 5-12: Summary of DNBR Comparison for the 17-Channel Model for the Main Steam Line Break.........................................................................................5-50 AREVA NP Inc. ANP-10311NP COBRA-FLX: A Core Thermal-Hydraulic Analysis Code Topical Report Page v List of Figures Page Figure 1-1: ARCADIA® Code System.......................................................................................1-4 Figure 1-2: Typical COBRA-FLX U.S. Application Input/Output Interfaces...............................1-6 Figure 2-1: Arbitrary Eulerian Control Volume..........................................................................2-2 Figure 2-2: Vertical Flow Past Fuel Rods.................................................................................2-3 Figure 2-3: Subchannel Control Volume.................................................................................2-15 Figure 2-4: Relation of Subchannel Control Volume to Reactor Core....................................2-16 Figure 2-5: A Pair of Subchannels..........................................................................................2-19 Figure 2-6: Example of Subchannel Numbering.....................................................................2-21 Figure 2-7: General Solution Flow Chart................................................................................2-43 Figure 2-8: Nodal Designation for Channels and Axial Location Indexes...............................2-45 Figure 2-9: SCHEME Solutions Sequence.............................................................................2-56 Figure 2-10: [ ]..........................................2-65 Figure 2-11: [ ]...................................................2-65 Figure 2-12: Pair of Interconnected Subchannels...................................................................2-75 Figure 2-13: Axial Nodal Indices for Control Volumes............................................................2-77 Figure 2-14: Control Volume for Mass Equation.....................................................................2-78 Figure 2-15: Control Volume for Energy Equation..................................................................2-79 Figure 2-16: Control Volume for Axial Momentum Equation...................................................2-84 Figure 2-17: Control Volume for Lateral Momentum Equation ...............................................2-90 Figure 2-18: PV Solution Sequence......................................................................................2-118 Figure 2-19: Example of Rod with Multiple Fluid Connections.............................................2-121 Figure 3-1: COBRA-FLX Code Structure..................................................................................3-2 Figure 3-2: COBRA-FLX High Level Solution Logic.................................................................3-7 Figure 3-3: SCHEME Solution Logic.........................................................................................3-9 Figure 3-4: Pressure-Velocity (PV) Solution Logic..................................................................3-10 Figure 5-1: Radial Node Scheme for the 12-Channel Model of a 193 Fuel Assembly Core (1/8th Core Symmetry)..................................................................................5-3 Figure 5-2: Two-Bundle Isothermal Crossflow Test Apparatus for the IBDCF Tests................5-5 Figure 5-3: Cross-Sectional View of IBDCF Test Arrangement................................................5-6 Figure 5-4: Cross-Sectional View of the IBDCF Test Arrangement Showing the 4 Channel Model Definition......................................................................................5-9 Figure 5-5: Axial and Crossflow Velocity for Channel 1 of IBDCF Test 147 Using PV Solution Method..................................................................................................5-10 Figure 5-6: Axial and Crossflow Velocity for Channel 2 of IBDCF Test 147 Using PV Solution Method..................................................................................................5-10 Figure 5-7: Axial and Crossflow Velocity for Channel 3 of IBDCF Test 147 Using PV Solution Method..................................................................................................5-11 AREVA NP Inc. ANP-10311NP COBRA-FLX: A Core Thermal-Hydraulic Analysis Code Topical Report Page vi Figure 5-8: Axial and Crossflow Velocity for Channel 4 of IBDCF Test 147 Using PV Solution Method..................................................................................................5-11 Figure 5-9: MARIGNAN Test Configuration with Two Adjacent Fuel Assemblies with Defined Subchannels (lateral view).....................................................................5-13 Figure 5-10: Location of the Velocity Measurements in the MARIGNAN Test Configuration (Full View).....................................................................................5-14 Figure 5-11: Location of the Velocity Measurements in the MARIGNAN Test Configuration (Exploded View)............................................................................5-15 Figure 5-12: Axial Velocity Comparisons by Subchannel Row at the Relative Axial Location of Y= - 200.0 mm in the MARIGNAN Test............................................5-16 Figure 5-13: Axial Velocity Comparisons by Subchannel Row at the Relative Axial Location of Y= - 7.5 mm in the MARIGNAN Test................................................5-17 Figure 5-14: Axial Velocity Comparisons by Subchannel Row at the Relative Axial Location of Y= +7.0 mm in the MARIGNAN Test................................................5-17 Figure 5-15: Axial Velocity Comparisons by Subchannel Row at the Relative Axial Location of Y= +200.0 mm in the MARIGNAN Test............................................5-18 Figure 5-16: DNBR Response During a 4 Pump Coastdown Using the P and PV Solution Methods.................................................................................................5-22 Figure 5-17: DNBR Response During a 4 Pump Coastdown Using the P and PV Solution Methods for the Axial Range of 200 to 350 cm.....................................5-23 Figure 5-18: DNBR-Limiting Subchannel Mass Flux versus Axial Location at Three Times during a 4 Pump Coastdown for the P and PV Solution Methods............5-24 Figure 5-19: DNBR-Limiting Subchannel Enthalpy versus Axial Location at 0.0 Seconds During a 4 Pump Coastdown for the P and PV Solution Methods......................5-25 Figure 5-20: DNBR-Limiting Subchannel Enthalpy versus Axial Location at 3.4 Seconds during a 4 Pump Coastdown for the P and PV Solution Methods.......................5-25 Figure 5-21: DNBR-Limiting Subchannel Enthalpy versus Axial Location at 4.8 Seconds during a 4 Pump Coastdown for the P and PV Solution Methods.......................5-26 Figure 5-22: Transient “A” Progression through Heat Transfer Modes...................................5-30 Figure 5-23: Transient “A” Clad Wall Temperature Response................................................5-30 Figure 5-24: Transient “B” Progression through Heat Transfer Modes...................................5-31 Figure 5-25: Transient “B” Clad Wall Temperature Response................................................5-31 Figure 5-26: 2-Channel Model with No Crossflow for Code Comparisons..............................5-32 Figure 5-27: Normalized Axial Pressure Drop Comparison for the 2-Channel Model with No Crossflow.......................................................................................................5-33 Figure 5-28: Axial Void Fraction Comparison for the 2-Channel Model with No Crossflow....5-34 Figure 5-29: Coolant Density Comparison for the 2-Channel Model with No Crossflow.........5-34 Figure 5-30: Coolant Enthalpy Comparison for the 2-Channel Model with No Crossflow.......5-35 Figure 5-31: Radial Node Scheme for the 38 Channel Model (1/8th Core Symmetry) With Crossflow for Code Comparisons........................................................................5-36 Figure 5-32: Mass Velocity Comparison for the 38-Channel Model With Crossflow...............5-37 Figure 5-33: Void Fraction Comparison for the 38-Channel Model with Crossflow................5-38 Figure 5-34: Coolant Enthalpy Comparison for the 38-Channel Model with Crossflow..........5-39 AREVA NP Inc. ANP-10311NP COBRA-FLX: A Core Thermal-Hydraulic Analysis Code Topical Report Page vii Figure 5-35: Mass Velocity Comparison for the 38-Channel Model Using the Homogenous Void Model....................................................................................5-40 Figure 5-36: Void Fraction Comparison for the 38-Channel Model Using the Homogenous Void Model....................................................................................5-40 Figure 5-37: Void Fraction Comparison for the 2-Channel Model Using the Homogenous Void Model..........................................................................................................5-41 Figure 5-38: Radial Node Scheme for a 17-Channel Model (1/8th Core Symmetry) for the Main Steam Line Break Event.......................................................................5-42 Figure 5-39: DNBR Comparison for the 12-Channel Model for the 4 Pump Coastdown........5-43 Figure 5-40: Mass Velocity Comparison for the 12-Channel Model for the 4 Pump Coastdown..........................................................................................................5-44 Figure 5-41: Thermodynamic Quality for the 12-Channel Model for the 4 Pump Coastdown..........................................................................................................5-44 Figure 5-42: DNBR Comparison for the Combined Effect of All Modeling Parameters in Table 5-9 for the 4 Pump Coastdown..................................................................5-46 Figure 5-43: Mass Velocity Comparison for the Combined Effect of All Modeling Parameters in Table 5-9 for the 4 Pump Coastdown at the Time of Minimum DNBR...................................................................................................5-47 Figure 5-44: Thermodynamic Quality Comparison for the Combined Effect of All Modeling Parameters in Table 5-9 for the 4 Pump Coastdown at the Time of Minimum DNBR...............................................................................................5-47 Figure 5-45: DNBR Comparison for the 12 Channel Model for the Locked Rotor..................5-48 Figure 5-46: DNBR Comparison for the 17-Channel Model for the Main Steam Line Break in the Limiting Subchannel........................................................................5-50 AREVA NP Inc. ANP-10311NP Revision 0 COBRA-FLX: A Core Thermal-Hydraulic Analysis Code Topical Report Appendix Page viii Table of Contents Page Appendix A : Empirical Correlations........................................................................................A-1 A.1 Introduction........................................................................................................A-1 A.2 Water Properties...............................................................................................A-1 A.3 Friction Factor ...................................................................................................A-1 A.3.1 Single-phase Flow..............................................................................A-2 A.3.2 Two-phase Flow.................................................................................A-5 A.4 Void Fraction Correlation...................................................................................A-7 A.4.1 Bulk Void.............................................................................................A-7 A.4.2 Subcooled Void.................................................................................A-18 A.5 Heat Transfer Coefficients...............................................................................A-23 A.6 DNBR Iteration Scheme..................................................................................A-38 A.7 References......................................................................................................A-39 Appendix B : COBRA-FLX Development History.....................................................................B-1 B.1 History...............................................................................................................B-1 B.2 History of COBRA Development.......................................................................B-1 B.2.1 COBRA Versions Leading to COBRA 3-CP.......................................B-2 B.2.2 Creation and Further Development of COBRA 3-CP.........................B-5 B.3 References........................................................................................................B-8 Appendix C : Critical Heat Flux Correlation Validation.............................................................C-1 C.1.1 Validation Process..............................................................................C-1 C.2 The ACH-2 CHF Correlation .............................................................................C-4 C.2.1 Measured to Predicted CHF Performance..........................................C-5 C.2.2 Design Limit DNBR.............................................................................C-8 C.2.3 Ranges and Limitations......................................................................C-9 C.3 The BHTP CHF Correlation.............................................................................C-10 C.3.1 Predicted to Measured CHF Performance........................................C-10 C.3.2 Statistical Design Limit......................................................................C-12 C.3.3 Ranges and Limitations....................................................................C-13 C.4 The BWU-Z CHF Correlation for Mark-BW17 Fuel with MSMGs....................C-14 C.4.1 Measured to Predicted CHF Performance........................................C-15 C.4.2 Statistical Design Limit......................................................................C-16 C.4.3 Ranges and Limitations....................................................................C-18 C.5 The BWU-Z CHF Correlation for Mark-BW17 Fuel.........................................C-18 C.5.1 Measured to Predicted CHF Performance........................................C-19 C.5.2 Statistical Design Limit......................................................................C-21 C.5.3 Ranges and Limitations....................................................................C-23

Description:
Table 5-3: Summary of COBRA-FLX Predictions Using the Pressure-Velocity E.9.47 G8-2m: Fuel rod model (gap gas data). Section 2. Problem Formulation. Section 3. Code Structure and Flow Logic Description Laser Doppler velocimetry was used to acquire particle velocities in the axial and.
See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.