ebook img

CMOS Analog Circuit Design (2nd Ed.) Homework Solutions PDF

509 Pages·2002·4.95 MB·English
by  
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview CMOS Analog Circuit Design (2nd Ed.) Homework Solutions

CMOS Analog Circuit Design (2nd Ed.) Homework Solutions : 9/20/2002 1 Chapter 1 Homework Solutions 1.1-1 Using Eq. (1) of Sec 1.1, give the base-10 value for the 5-bit binary number 11010 (b4 b3 b2 b1 b0 ordering). From Eq. (1) of Sec 1.1 we have N b 2-1 + b 2-2 + b 2-3 + ...+ b 2-N =∑b 2-i N-1 N-2 N-3 0 N-i i=1 1 1 0 1 0 1 × 2-1 + 1× 2-2 + 0 × 2-3 + 1 × 2-4 + 0 × 2-5 = + + + + 2 4 8 16 32 16 + 8 + 0 + 2 + 0 26 13 = = = 32 32 16 1.1-2 Process the sinusoid in Fig. P1.2 through an analog sample and hold. The sample points are given at each integer value of t/T. 15 14 13 12 11 e ud 10 plit 9 m 8 A 7 6 5 4 3 2 1 0 1 2 3 4 5 6 7 8 9 10 11 Sample times _ t_ T Figure P1.1-2 1.1-3 Digitize the sinusoid given in Fig. P1.2 according to Eq. (1) in Sec. 1.1 using a four-bit digitizer. CMOS Analog Circuit Design (2nd Ed.) Homework Solutions : 9/20/2002 2 1111 15 1110 14 1101 13 12 1100 11 ude 10 1010 plit 9 m 8 1000 1000 A 7 0110 6 5 0101 4 0011 3 2 0010 0010 1 0 1 2 3 4 5 6 7 8 9 10 11 Sample times _ t_ T Figure P1.1-3 The figure illustrates the digitized result. At several places in the waveform, the digitized value must resolve a sampled value that lies equally between two digital values. The resulting digitized value could be either of the two values as illustrated in the list below. Sample Time 4-bit Output 0 1000 1 1100 2 1110 3 1111 or 1110 4 1101 5 1010 6 0110 7 0011 8 0010 or 0001 9 0010 10 0101 11 1000 1.1-4 Use the nodal equation method to find v /v of Fig. P1.4. out in CMOS Analog Circuit Design (2nd Ed.) Homework Solutions : 9/20/2002 3 A B R R 1 2 v R v g v R v in 3 1 m 1 4 out Figure P1.1-4 Node A: 0 = G (v -v ) + G (v ) + G (v - v ) 1 1 in 3 1 2 1 out v (G + G + G ) - G (v ) = G (v ) 1 1 2 3 2 out 1 in Node B: 0 = G (v -v ) + g (v ) + G ( v ) 2 out 1 m1 1 4 out v (g - G ) + v (G + G ) = 0 1 m1 2 out 2 4  G +G +G G v  1 2 3 1 in   g - G 0  m1 2  v = out  G +G +G - G  1 2 3 2   g - G G + G  m1 2 2 4  v G (G - g ) out 1 2 m1 = v G G + G G + G G + G G + G G + G g in 1 2 1 4 2 4 3 2 3 4 2 m1 1.1-5 Use the mesh equation method to find v /v of Fig. P1.4. out in R R 1 2 vin ia R3 v1 gmv1 R4 vout ib ic Figure P1.1-5 0 = -v + R (i + i + i ) + R (i ) in 1 a b c 3 a CMOS Analog Circuit Design (2nd Ed.) Homework Solutions : 9/20/2002 4 0 = -v + R (i + i + i ) + R (i + i ) + v in 1 a b c 2 b c out v out i = c R 4 i = g v = g i R b m 1 m a 3  v  out 0 = -v + R i + g i R +  + R i in 1 a m a 3 R 3 a  4  v   v  out out 0 = -v + R i + g i R +  + R  g i R +  + v in 1 a m a 3 R 2 m a 3 R out  4  4 R 1 v = i (R + R + g R R ) + v in a 1 3 m 1 2 out R 4 R + R + R  1 2 4 v = i (R + g R R + g R R ) + v   in a 1 m 1 3 m 2 3 out R  4   R +R + g R R v  1 3 m 1 3 in   R + g R R + g R R v  1 m 1 3 m 2 3 in  v = out  R + R + g R R R / R  1 3 m 1 3 1 4   R + g R R + g R R (R + R +R ) / R  1 m 1 3 m 2 3 1 2 4 4  v R R (1 - g R ) in 3 4 m 2 v = out 2 2 (R + R + g R R ) (R + R + R ) - (R + g R R + g R R R ) 1 3 m 1 3 1 2 4 1 m 1 3 m 1 2 3 v R R (1 - g R ) in 3 4 m 2 v = out R R + R R + R R + R R + R R + g R R R 1 2 1 4 1 3 2 3 3 4 m 1 3 4 v R R (1 - g R ) out 3 4 m 2 = v R R + R R + R R + R R + R R + g R R R in 1 2 1 4 1 3 2 3 3 4 m 1 3 4 1.1-6 Use the source rearrangement and substitution concepts to simplify the circuit shown in Fig. P1.6 and solve for i /i by making chain-type calculations only. out in CMOS Analog Circuit Design (2nd Ed.) Homework Solutions : 9/20/2002 5 i R 2 i R v r i R i in 1 1 m 3 out i R 2 i R v r i r i R i in 1 1 m m 3 out i R 2 i R v R-r r i R i in 1 1 m m 3 out Figure P1.1-6 -r m i = i out R 3 R 1 i = i R + R - r in 1 m i -r R /R out m 1 3 = i R + R - r in 1 m 1.1-7 Find v /v and v /i of Fig. P1.7. 2 1 1 1 CMOS Analog Circuit Design (2nd Ed.) Homework Solutions : 9/20/2002 6 gm(v1-v2) i 1 v R v 1 L 2 Figure P1.1-7 v 2 = g (v - v ) R v m 1 2 L 1 v (1 + g R ) = g R v 2 m L m L 1 v g R 2 m L = v 1 + g R 1 m L v = i R 2 1 L substituting for v yields: 2 i R g R 1 L m L = v 1 + g R 1 m L v R ( 1 + g R ) 1 L m L = i g R 1 m L v 1 1 = R + i L g 1 m 1.1-8 Use the circuit-reduction technique to solve for v /v of Fig. P1.8. out in CMOS Analog Circuit Design (2nd Ed.) Homework Solutions : 9/20/2002 7 A (v - v ) v in 1 vin R1 v1 R2 vout N N 1 2 A v A v v 1 v in vin R1 v1 R2 vout Figure P1.1-8a Multiply R by (A + 1) 1 v A v v in vin v1 R2 vout R (Av+1) 1 Figure P1.1-8b -A v R v in 2 v = out R + R (A +1) 2 1 v v -A R out v 2 = v R + R (A +1) in 2 1 v CMOS Analog Circuit Design (2nd Ed.) Homework Solutions : 9/20/2002 8 -A v R v -A + 1 2 out v = v R in 2 + R A + 1 1 v As A approaches infinity, v v -R out 2 = v R in 1 1.1-9 Use the Miller simplification concept to solve for v /v of Fig. A-3 (see out in Appendix A). R R 1 3 r i ma v v in R 1 v 2 out i i a b Figure P1.1-9a (Figure A-3 Mesh analysis.) v -r i -r out m a m K = = = v i R R 1 a 2 2 R 3 Z = 1 r m 1 + R 2 -r m R 3 R 2 Z = 2 r m - - 1 R 2 CMOS Analog Circuit Design (2nd Ed.) Homework Solutions : 9/20/2002 9 R 3 r m R R 2 3 Z = = 2 r R m 2 + 1 + 1 R r 2 m R 1 r i ma vin R2 Z1 Z2 vout i a Figure P1.1-9b v (R || Z ) in 2 1  1  i =   a (R || Z ) + R R 2 1 1  2 v = -r i out m a -v r (R || Z ) in m 2 1  1  v =   out (R || Z ) + R R 2 1 1  2 v -r (R || Z ) out m 2 1  1  =   v (R || Z ) + R R in 2 1 1  2 v -r R out m 3 = v (R R + R R + R r + R R ) in 1 2 1 3 1 m 2 3 1.1-10 Find v /i of Fig. A-12 and compare with the results of Example A-1. out in i R1 v1 R'2 R3 vout in g v m 1 Figure P1.1-10 CMOS Analog Circuit Design (2nd Ed.) Homework Solutions : 9/20/2002 10 ' v = i (R || R ) 1 in 1 2 ' v = -g v R = -g R i (R || R ) out m 1 3 m 3 in 1 2 v out ' = -g R (R || R ) i m 3 1 2 in R ' 2 R = 2 1 + g R m 3 R R 1 2 1 + g R ' m 3 R || R = 1 2 (1 + g R ) R + R m 3 1 2 1 + g R m 3 R R ' 1 2 R || R = 1 2 (1 + g R ) R + R m 3 1 2 v -g R R R out m 1 2 3 = i R + R + R + g R R in 1 2 3 m 1 3 The A.1-1 result is: v R R - g R R R out 1 3 m 1 2 3 = i R + R + R + g R R in 1 2 3 m 1 3 if g R >> 1 then the results are the same. m 2 1.1-11 Use the Miller simplification technique described in Appendix A to solve for the output resistance, v /i , of Fig. P1.4. Calculate the output resistance not using the Miller o o simplification and compare your results. R R 1 2 v R v g v R v in 3 1 m 1 4 out Figure P1.1-11a

Description:
CMOS Analog Circuit Design (2nd Ed.) Homework Solutions : 9/20/2002 1 Chapter 1 Homework Solutions 1.1-1 Using Eq. (1) of Sec 1.1, give the base-10 value for the 5
See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.