TheJournal’snamewillbesetbythepublisher DOI:willbesetbythepublisher (cid:13)c Ownedbytheauthors,publishedbyEDPSciences,2015 5 1 0 CLICdp Overview 2 n Overview of physics potential at CLIC a J AharonLevy1,ab 2 1 OnbehalfoftheCLICdpCollaboration 1TelAvivUniversity,TelAviv,Israel ] x e - Abstract. CLICdp,theCLICdetectorandphysicsstudy,isaninternationalcollabora- p tionpresentlycomposedof23institutions. Thecollaborationisaddressingdetectorand e physics issues for the future Compact Linear Collider (CLIC), a high-energy electron- h positronacceleratorwhichisoneoftheoptionsforthenextcollidertobebuiltatCERN. [ Precisionphysicsunderchallengingbeamandbackgroundconditionsisthekeytheme 1 for the CLIC detector studies. This leads to a number of cutting-edge R&D activities v withinCLICdp.ThetalkincludesabriefintroductiontoCLIC,acceleratoranddetectors, 4 hardwareR&DaswellasphysicsstudiesatCLIC. 1 6 2 0 . 1 Introduction 1 0 The Compact Linear Collider detector and physics (CLICdp) collaboration [1] is a detector and 5 physicsR&Dinternationalcollaborationwhichincludes23institutesfromalargegeographicarea. 1 : An overview of the activities of CLICdp [2] is presented in this talk. It first describes shortly v the Compact Linear Collider (CLIC) [3] with an overview of the physics scope which would drive i X the energy staging of the collider. This is followed by a description of the detector requirements r andexperimentalconditionsdictatedbythestructureofthebeamandbythephysicsprogram. The a CLIC detector concept, the subdetectors and the respective R&D work will be discussed. Next, a descriptionisgivenoftheCLICphysicscapabilities,includingexamplesofbenchmarkstudiesbased on full detector simulations with overlay of beam-induced background processes. The examples of physicscapabilitiescoverthefollowingphysicstopics: Higgs,TopandNewPhysics. 2 The CLIC accelerator Currently there are two TeV-scale linear e+e− colliders under development, CLIC [3] and ILC [4]. Both machines are designed for high luminosities, of the order of 1034 cm−2sec−1. The ILC uses superconducting RF cavities, while CLIC usesa two-beam accelerator scheme at room temperature (Fig1). Ahighcurrent(∼100A)low-energydrive-beamservesasanRFsourceforthelow-current (∼1A)high-energymainbeam. ae-mail:[email protected] bThisworkwaspartiallysupportedbytheEUAIDAprojectandbytheGerman-IsraelFoundation(GIF) TheJournal’sname Figure1. SuperconductingRFcavitiesfortheILC(a)andnormalconductingaccelerationstructuresforCLIC (b). TheILChasagradientof32MV/mwhileCLIChasagradientof100MV/mandthereforecanbe ashortermachineforthesamecentre-of-mass(cms)energy. TheILCisdesignedforupto500GeV, upgradableto1TeV.CLICisdesignedforupto3TeVandwillbestaged. Thestagingwouldbein threesteps,forexample500GeV,1.4TeVand3TeV.Inoneofthescenarios,basedonaccelerating unitsof100MeV/m,itwillstartasa11.4kmlongcolliderat500GeV,increaseitsenergyto1.5TeV, resultingina27.2kmmachine,andfinallyextendtoalengthof48.3kmforacmsenergyof3TeV (see Fig. 2). More details about the CLIC parameters for the three scenarios are listed in Table 1. drive beam detector main beam BDS L=1.87 km accelerator 100 MV/m L=2.75 km L=2.75 km unused arcs Figure2.SimplifiedupgradeschemeforaCLICstagingscenario. CLICisclearlyanambitiousprojectwhichrequireshighpowerconsumptionbut,aswillbediscussed later,ithasthepotentialofproducingexcitingphysicsresults. Apossibleimplementationofsucha machinenearCERNisshowninFig3. ThefirststagewillallowforguaranteedprecisionHiggsandtopphysics,sotheenergyofthefirst stage will be chosen near the tt¯threshold. The total integrated luminosity of ∼500 fb−1 required at this energy will require to run for four years. Four more years will be needed to collect ∼1.5 ab−1 of integrated luminosity at the 1.4 TeV stage, for more precision Higgs physics, and, hopefully fol- lowing LHC discoveries, precision measurements of new physics phenomena Beyond the Standard Model(BSM)orindirectsearchesofBSMthroughhigh-precisionobservables. The3TeVstagewill allowforadecentmeasurementoftheelusiveHiggsself-coupling,andforadditionalaccurateBSM measurementsandsearches. NewFrontiersinPhysics2014 Table1.ParametersfortheCLICenergystages. Parameter Symbol Unit Stage1 Stage2 Stage3 √ Centre-of-massenergy s GeV 500 1500 3000 Repetitionfrequency f Hz 50 50 50 rep Numberofbunchespertrain n 312 312 312 b Bunchseparation ∆ ns 0.5 0.5 0.5 t Acceleratinggradient G MV/m 100 100 100 Totalluminosity L 1034cm−2s−1 1.3 3.7 5.9 √ Luminosityabove99%of s L 1034cm−2s−1 0.7 1.4 2 0.01 Maintunnellength km 11.4 27.2 48.2 Chargeperbunch N 109 3.7 3.7 3.7 Bunchlength σ µm 44 44 44 z IPbeamsize σ /σ nm 110/2.6 ≈60/1.5 ≈40/1 x y Normalisedemittance(endoflinac) (cid:15) /(cid:15) nm - 660/20 660/20 x y Normalisedemittance (cid:15) /(cid:15) nm 660/25 - - x y Estimatedpowerconsumption P MW 235 364 589 wall Legend Lake Geneva CERN existing LHC Potential underground siting : CLIC 500 Gev CLIC 1.5 TeV CLIC 3 TeV Jura Mountains IP Geneva Figure3.CLICfootprintsnearCERN,showingvariousimplementationstages. Onepossibletime-linefortheCLICmachinewouldbetohavea(hopefully)positivedecisionin 2018-19, followed by a 4-5 year preparation phase and a start of construction in 2024-25 alongside withdetectorsconstructionandstartofoperationin2032-33. TheJournal’sname 3 CLIC experimental environment 3.1 Thebeamstructure Theexpectedcrosssectionsofthemostinterestingprocessesatthethreestagesareoftheorderoffb, sohighluminositiesareneeded. Inordertoachievesuchhighluminositiesatalinearcollider, very smallbeamsandahighbeamrepetitionrateareneeded. Itwillhave50bunchtrainspersecond,each trainwillbe156nslong,andwillinclude312buncheseachseparatedby0.5ns(seeFig4). Thiswill giveaverylowdutycyclewhichcanbeusedtopowerpulsethedetectorcomponents(seelater). This reduces power dissipation and significantly reduces on-detector cooling infrastructure. Beam sizes Figure4.ThebeamstructureofCLIC.Thereare312bunchesinatrain,thebunchesbeing0.5nsapart,thetrain lengthis156nsandthetrainsareseparatedby20ms. willbeverysmall. Withsuchabeam,detailedinTable2,weexpectonaveragelessthanonephysics eventperbunchtrain. Thismeansthatnotriggerisneededandalleventscanberecorded. Table2.Someparametersofa3TeVCLICbeam.BXstandsforbunchcrossing. CLICat3TeV L(cm−2s−1) 5.9×1034 BXseparation 0.5ns #BX/train 312 trainduration 156ns repetitionrate 50Hz dutycycle 0.00078% σ /σ 45/1nm x y σ 44µm z 3.2 Beam-inducedbackground ThesmallbunchsizesrequiredtoachievehighluminosityatCLICgiverisetostrongelectromagnetic radiation, so-called beamstrahlung, from the electron and positron bunches in the high field of the oppositebeam.ThisprocessisdepictedinFig.5andgivesrisetothecreationofnumerousincoherent NewFrontiersinPhysics2014 electron-positron pairs, predominantly produced in very forward direction and with low transverse momenta. The large majority of particles from incoherent pairs leave the detector in the forward Figure5.PairproductionthroughtheBeamstrahlungprocess. region, where some of them give rise to back-scattering off the most forward detector elements. A smallfractionoftheparticlesfromincoherentpairsreachesthecentraldetectorregiondirectly. Theaverageenergyloss,δE,ofabeamparticleduetobeamstrahlungis,infirstapproximation, N2γ δE ∝ L , (1) (σ +σ )2σ x y z whereNisthenumberofbunchparticles,γ istheparticleLorentzfactorandσ ,σ ,σ arethebeam L x y z dimensions in x,y and z coordinates. This equation shows that the energy loss, and therefore the numberofradiatedphotons,dependsonthemachineparametersandincreaseswithdecreasingbeam dimensions. Anothersourceofbackgroundistheγγ→hadronsprocess,throughthediagramshowninFig.6, whichfillsupthedetectorwithsome19TeVofenergyperbunchtrainat3TeV,soagoodselection isneededtobeabletoremovethisbackgroundfromtherecordeddata. At3TeV,theexpectedrateof Figure6.Diagramdescribingthetwo-photontohadronsprocess. thistypeofbackgroundis3.2γγ →hadronseventsperbunchcrossingwithinvariantmass M >2 γγ GeV. 3.3 Theluminosityspectrum Thebeamstrahlungandinitialstateradiationimplythatnotallthee+e− collisionsatCLICwilltake place at the nominal cms energy, as the beam particles may radiate photons before their collision. √ Therefore,theeffectivecmsenergyofthecollision, s(cid:48),willbelessthanthenominalcmsenergyof √ √ the machine, s. Thus the luminosity spectrum will have a peak at s corresponding to collisions TheJournal’sname E d0.02 / N d 0.015 0.01 0.005 0 0 1000 2000 3000 s' [GeV] √ √ Figure7. Theluminosityspectrumasafunctionoftheeffectivecms, s(cid:48),foranominalCLICcmsenergy s of3TeV. withno radiationprior tothe e+e− interactionand along tailtowards lowerenergies. The expected luminosity spectrum for the 3 TeV CLIC stage is shown in Fig. 7. At this energy, about 1/3 of the luminosityisinthemostenergetic1%fractionofthespectrum,andincreasestoabove1/2at500GeV (L inTable1). 0.01 4 CLIC detector concept 4.1 ImpactofCLICconditionsonthedetector The presence of beam-induced backgrounds impacts on the detector design. The e+e− pairs from incoherentpairproductiongiverisetohighoccupanciesincertainregionsofthedetector,inparticular theforwardcalorimetry,thevertexdetectorandtheinnertrackingregions. Inthevertexandtracking detectors, high occupancies can be mitigated by appropriate shielding for back-scattered particles from the very forward regions and by the use of very small cell sizes, sometimes even smaller than strictlyneededfordetectorresolutionpurposes. Backgroundparticlesfromγγ→hadroneventslead to significant energy depositions in the calorimeter systems, at the level of 20 TeV per bunch train at3TeVcentre-of-massenergy. Aschemehasbeendevelopedtosuppresstheseenergydepositions in the data. The scheme relies on precise hit timing, at the level of 1ns in the calorimetry and 10 ns in the tracking, combined with fine-grained calorimetry. This allows to reconstruct all particles, whetherfrombackgroundorfromthephysicseventunderstudy,usingparticleflowanalysis. Inthis waythetimeofcreationofeachparticlecanbecalculatedveryaccurately,allowingfortherejection ofout-of-timeparticlesthatdonotmatchthetimeofthephysicsevent. TheeffectivenessoftheaboveprocedureisillustratedinFig.8,showinganeventfromthereaction e+e− → H+H− → tb¯bt¯ → 8jets at 3 TeV before and after beam-induced background suppression accordingtothisprocedure. NewFrontiersinPhysics2014 Figure8.An8-jeteventoverlayedwithbackground(a)andafterfiltering(b). 4.2 Detectorneedsfromphysicsaims 4.2.1 Momentumresolution OneofthephysicssubjectstobediscussedinSection5isHigsstrahlung,e+e− → HZ. Thisprocess, in which the Higgs is reconstructed as the particle recoiling off the Z in the final state, is unique in allowing a model-independent determination of Higgs mass and coupling without any assumptions abouttheinvisibledecayoftheHiggs. TheZ wouldbereconstructedfromitsmuondecayandthus one needs a very good momentum resolution. Another physics process needing high momentum resolutionwouldbethesearchforasmuonthroughthemuonmomentumendpoint. Thesetwoand othersimilarstudiesrequireamomentumresolutionof σ /p2 ∼2×10−5GeV−1. (2) pT T 4.2.2 Jet-energyresolution In order to reconstruct W and Z from di-jets and be able to separate them, it is important to have excellentjet-energyresolution. Forinstance,fora2.5%resolutiononthemass,a3.5%resolutionon thejetenergyisneeded. Thereforetherequirementforhighenergyjetswouldbe σ /E ≤3.5% (3) E forjetswithE >100GeV(≤5%at50GeV). 4.2.3 Impactparameterresolution In order to measure the Higgs branching ratios, it is important to be able to tag jets from c and b quarks. This calls for a good ability to reconstruct secondary vertices. This leads to the following requirementontheimpactparameterresolution: σrφ =5⊕15/(p[GeV]sin32θ)µm. (4) 4.2.4 Angularcoverage Formanyofthephysicsstudies,theabilitytotagforward-goingelectronsdowntoverysmallpolar angleisimportant. Thisisdiscussedintheforwardcalorimetrysection. TheJournal’sname 4.3 ApossibleCLICdetector The CLIC detector concept is derived from the ILC detector concepts, ILD [5] and SiD [6], and is adapted to the conditions at CLIC. A schematic view of the CLIC detector is shown in Fig. 9. It is composed of barrel and endcap sections. Going outwards from the interaction point, the detector comprises: a low-mass vertex detector, a silicon-based main tracker, a fine-grained electromagnetic calorimeter(ECAL),afine-grainedhadroncalorimeter(HCAL),alarge4to5Teslasuperconducting solenoid and an instrumented return yoke with muon identification layers. In the forward direction, near the incoming and outgoing beams, compact fine-grained forward calorimeters, LumiCal and BeamCal,arelocated. Thefinalfocusingquadrupolesfortheincomingbeamsarealsoplacedinside thedetectorvolume. Theoveralllengthofthedetectorisapproximately13mforaheightof14m. In complex forward return yoke with region with final Instrumentation beam focusing for muon ID e- strong solenoid 4 T – 4.5 T fine grained (PFA) e+ calorimetry, 1 + 7.5 Λ i 6.5 m main silicon-based ultra low-mass tracker (large pixels vertex detector and strips) with ~25 µm pixels Figure9. ApossibleCLICdetector,derivedfromthetwoILCdetectorconcepts. Thetextintheframedboxes givessomeexplanationonthedifferentcomponentsofthedetector. thefollowing,afewpointsonsomeimportantitemsoftheCLICdetector. 4.3.1 Vertexdetector Thevertexdetectorisanessentialpartofthetrackingsystem. Moreover,thevertexdetectorprovides essential information on flavour tagging through the measurement of displaced vertices. The vertex detectorcomprisesthreedouble-layersofpixeldetectorsinthebarrelregionaswellasintheforward discregion.Asingle-pointresolutionforeachindividuallayerof3µmisrequired,andtime-stamping forindividualhitsatthelevelof10ns.Occupanciesfrombeam-inducedbackgroundswillbehighand willlimitthemaximumallowedpixelsurface. Overallavertexdetectorof2Gpixelsforanindividual pixel surface of 25×25 µm2 is foreseen. The maximum amount of material amounts to 0.2%X per 0 layer. Theradiationlevelswillbesignificantlyless(factor10−4)thanatLHC. Tomeettheserequirements,verythinhybriddetectorscomposedof 50µmthinresistivesilicon sensorsand50µmASICsareunderdevelopment. Tofurthermeetthelow-massrequirement,power NewFrontiersinPhysics2014 pulsing at the 50 Hz beam train rate is foreseen. This will keep the heat dissipation at the level of 50 mW/cm2 and will allow for air cooling. A vertex detector having these qualities could look like the one shown in Fig. 10. The CLIC vertex detector is the subject of a very active detector R&D Figure10. Apossiblevertexdetectorlayout.ThetwoinnersiliconbarrelstripslayersareSIT1andSIT2,and thevertexbarrelisVXB. project[7]. 4.3.2 Tracker ThemaintrackeratCLICwillbebasedonsilicontechnology. Itwillcompriselargepixelelements aswellassiliconmicrostrips,adaptedtolocaloccupancylevels. Singlepointresolutionsnear7µm arerequiredaswellastime-stampingforindividualhitsatthelevelof10ns. Thedesignofasilicon trackerconceptandtheassessmentofthecorrespondinghardwareimplementationoptionsforCLIC arestillunderstudy. 4.3.3 CalorimetryandPFA Thejetenergyresolutionandthebeam-inducedbackgroundrejectiondrivetheoveralldetectordesign. As already mentioned above, the good jet energy resolution and background rejection are achieved throughfine-grainedcalorimetryandbyaparticle-flowanalysis(PFA)[8]. Figure11isanillustration ofhowonerecognisesindividualparticlesinjetsusingthePFAalgorithm. Typically60%ofajetis composedofchargedparticles,30%ofphotonsand10%oflong-livedneutralhadrons.Chargedparti- clesprofitfromtheexcellentmomentumresolutioninthetracker,whilephotonsarewellmeasuredin theECAL.NeutronsrelyonmeasurementsintheHCAL,whichislessgoodduetohadronicshower fluctuations. Byreconstructingindividualparticlesinjets,thebestinformationcanbeusedforeach ofthemandagoodoveralljetenergyresolutioncanbeobtained. Thecombinationofhardwareand softwareisprovidingthewantedresult. 4.4 CLICforwardcalorimetry Twosmallcompactcalorimetersareplannedintheforwardregion(Fig.12,thetworedcircles),with theaimtomeasuretheluminosity,toprovideelectronvetocapabilitiesatsmallanglesaswellasafast TheJournal’sname Figure11. Simulationofa250GeVjetproducedintheILDdetector,consistingofdifferenttypesofparticles reconstructedusingparticle-flowanalysis.Theinsertatthetopleftshowstheseparationofthetypesofparticles. Figure12. (a)PartofaCLICdetectorshowingthetwoforwardcalorimeters,LumiCalandBeamCalinsidethe redcircles.(b)LumiCal,acompactluminositycalorimeter,composedofTungstenlayersandsiliconsensors. beammonitoringsystemandtocomplementthehermeticityofthefulldetector.Theluminositydetec- tor,LumiCal,coveringtheangularregionof38-110mrad,willperformprecisionmeasurements[9] oftheBhabhaeventrateandtherebymeasuretheluminosity. TheveryforwardcoverageofBeam- Cal, 10-40mrad, enhancesthehermiticityofthedetector. TheBeamCalissubjecttohighdosesof radiation, eventhoughbyfourordersofmagnitudelessthanthoseintheforwardregionofLHC.It requirestheBeamCaltouseradiation-hardsensors;GaAssensorsarepresentlyproposed.