ebook img

Classical mechanics PDF

610 Pages·2006·6.42 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Classical mechanics

CLASSICAL MECHANICS Gregory’s Classical Mechanics is a major new textbook for undergraduates in mathe- matics and physics. It is a thorough, self-contained and highly readable account of a subject many students find difficult. The author’s clear and systematic style promotes a good understanding of the subject: each concept is motivated and illustrated by worked examples,whileproblemsetsprovideplentyofpracticeforunderstandingandtechnique. Computer assisted problems, some suitable for projects, are also included. The book is structured to make learning the subject easy; there is a natural progression from core topics to more advanced ones and hard topics are treated with particular care. A theme of the book is the importance of conservation principles. These appear first in vectorial mechanicswheretheyareprovedandappliedtoproblemsolving. Theyreappearinana- lytical mechanics, where they are shown to be related to symmetries of the Lagrangian, culminatinginNoether’stheorem. •Suitableforawiderangeofundergraduatemechanicscoursesgiveninmathematicsand physicsdepartments: nopriorknowledgeofthesubjectisassumed •Profuselyillustratedandthoroughlyclass-tested,withacleardirectstylethatmakesthe subjecteasytounderstand: allconceptsaremotivatedandillustratedbythemanyworked examplesincluded • Good, accurately-set problems, with answers in the book: computer assisted problems and projects are also provided. Model solutions for problems available to teachers from www.cambridge.org/Gregory The author Douglas Gregory is Professor of Mathematics at the University of Manchester. He is a researcher of international standing in the field of elasticity, and has held visiting posi- tions at New York University, the University of British Columbia, and the University of Washington. He is highly regarded as a teacher of applied mathematics: this, his first book,istheproductofmanyyearsofteachingexperience. Bloodyinstructions,which,beingtaught, Returntoplagueth’inventor. SHAKESPEARE,Macbeth,actI,sc.7 Front Cover The photograph on the front cover shows Mimas, one of the many moons of Saturn; the huge crater was formed by an impact. Mimas takes 22 hours 37 minutes to orbit Sat- urn,theradiusofitsorbitbeing185,500kilometers.Afterreading Chapter 7, you will be able to estimate the mass of Saturn from thisdata! CLASSICAL MECHANICS AN UNDERGRADUATE TEXT R. DOUGLAS GREGORY UniversityofManchester cambridge university press Cambridge, New York, Melbourne, Madrid, Cape Town, Singapore, São Paulo Cambridge University Press The Edinburgh Building, Cambridge cb2 2ru, UK Published in the United States of America by Cambridge University Press, New York www.cambridge.org Informationo nthi stitle :www.cambri dge.org/9780521826785 © Cambridge University Press 2006 This publication is in copyright. Subject to statutory exception and to the provision of relevant collective licensing agreements, no reproduction of any part may take place without the written permission of Cambridge University Press. First published in print format 2006 isbn-13 978-0-511-16097-4 eBook (EBL) isbn-10 0-511-16097-6 eBook (EBL) isbn-13 978-0-521-82678-5 hardback isbn-10 0-521-82678-0 hardback isbn-13 978-0-521-53409-3 isbn-10 0-521-53409-7 Cambridge University Press has no responsibility for the persistence or accuracy of urls for external or third-party internet websites referred to in this publication, and does not guaranteethatanycontentonsuchwebsitesis,orwillremain,accurateorappropriate. Contents Preface. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ..xi 1Newtonianmechanicsofasingleparticle1 1Thealgebraandcalculusofvectors3 1.1Vectorsandvectorquantities.... ....................3 1.2Linearoperations: a+bandλa . . . . . . . . . . . . . . . . . . . ..5 1.3Thescalarproduct a·b . . . . . . . . . . . . . . . . . . . . . . . . ..10 1.4Thevectorproduct a×b . . . . . . . . . . . . . . . . . . . . . . . ..13 1.5Tripleproducts........... ....................15 1.6Vectorfunctionsofascalarvariable. . . . . . . . . . . . . . . . . . ..16 1.7Tangentandnormalvectorstoacurve. . . . . . . . . . . . . . . . . ..18 Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ..22 2Velocity,accelerationandscalarangularvelocity25 2.1Straightlinemotionofaparticle. . . . . . . . . . . . . . . . . . . . ..25 2.2Generalmotionofaparticle. . . . . . . . . . . . . . . . . . . . . . ..28 2.3Particlemotioninpolarco-ordinates. . . . . . . . . . . . . . . . . ..32 2.4Rigidbodyrotatingaboutafixedaxis...................36 2.5Rigidbodyinplanarmotion.... ....................38 2.6Referenceframesinrelativemotion. . . . . . . . . . . . . . . . . . ..40 Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ..43 3Newton’slawsofmotionandthelawofgravitation50 3.1Newton’slawsofmotion. . . . . . . . . . . . . . . . . . . . . . . . ..50 3.2Inertialframesandthelawofinertia. . . . . . . . . . . . . . . . . . ..52 3.3Thelawofmutualinteraction;massandforce...............54 3.4Thelawofmultipleinteractions.. ....................57 3.5Centreofmass. . . . . . . . . . . . . . . . . . . . . . . . . . . . . ..58 vi Contents 3.6Thelawofgravitation. . . . . . . . . . . . . . . . . . . . . . . . . ..59 3.7Gravitationbyadistributionofmass. . . . . . . . . . . . . . . . . ..60 3.8Theprincipleofequivalenceand g . . . . . . . . . . . . . . . . . . ..67 Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ..71 4Problemsinparticledynamics73 4.1Rectilinearmotioninaforcefield.................. ...74 4.2Constrainedrectilinearmotion.................... ...78 4.3Motionthrougharesistingmedium................. ...82 4.4Projectiles......... ..................... ...88 4.5Circularmotion. . . . . . . . . . . . . . . . . . . . . . . . . . . . . ..92 Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ..98 5Linearoscillations105 5.1Bodyonaspring. . . . . . . . . . . . . . . . . . . . . . . . . . . . ..105 5.2Classicalsimpleharmonicmotion. . . . . . . . . . . . . . . . . . . ..107 5.3Dampedsimpleharmonicmotion. . . . . . . . . . . . . . . . . . . ..109 5.4Driven(forced)motion. . . . . . . . . . . . . . . . . . . . . . . . . ..112 5.5Asimpleseismograph. . . . . . . . . . . . . . . . . . . . . . . . . ..120 5.6Coupledoscillationsandnormalmodes............... ...121 Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ..126 6Energyconservation131 6.1Theenergyprinciple. . . . . . . . . . . . . . . . . . . . . . . . . . ..131 6.2Energyconservationinrectilinearmotion.............. ...133 6.3Generalfeaturesofrectilinearmotion................ ...136 6.4Energyconservationinaconservativefield . . . . . . . . . . . . . . ..140 6.5Energyconservationinconstrainedmotion............. ...145 Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ..151 7Orbitsinacentralfield155 7.1Theone-bodyproblem–Newton’sequations............ ...157 7.2Generalnatureoforbitalmotion. . . . . . . . . . . . . . . . . . . . ..159 7.3Thepathequation. . . . . . . . . . . . . . . . . . . . . . . . . . . ..164 7.4Nearlycircularorbits. . . . . . . . . . . . . . . . . . . . . . . . . . ..167 7.5Theattractiveinversesquarefield . . . . . . . . . . . . . . . . . . . ..170 7.6Spacetravel–Hohmanntransferorbits . . . . . . . . . . . . . . . . ..177 7.7Therepulsiveinversesquarefield . . . . . . . . . . . . . . . . . . . ..179 7.8Rutherfordscattering. . . . . . . . . . . . . . . . . . . . . . . . . . ..179 AppendixAThegeometryofconics . . . . . . . . . . . . . . . . . . . . ..184 AppendixBTheHohmannorbitisoptimal............... ...186 Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ..188 Contents vii 8Non-linearoscillationsandphasespace194 8.1Periodicnon-linearoscillations.. ....................194 8.2 Thephaseplane((x ,x )–plane) . . . . . . . . . . . . . . . . . . . ..199 1 2 8.3Thephaseplaneindynamics( (x,v)–plane). . . . . . . . . . . . . . ..202 8.4Poincar e´-Bendixsontheorem:limitcycles.................205 8.5Drivennon-linearoscillations... ....................211 Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ..214 2Multi-particlesystems219 9Theenergyprinciple221 9.1Configurationsanddegreesoffreedom..................221 9.2Theenergyprincipleforasystem . . . . . . . . . . . . . . . . . . . ..223 9.3Energyconservationforasystem . . . . . . . . . . . . . . . . . . . ..225 9.4Kineticenergyofarigidbody... ....................233 Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ..241 10Thelinearmomentumprinciple245 10.1Linearmomentum. . . . . . . . . . . . . . . . . . . . . . . . . . . ..245 10.2Thelinearmomentumprinciple. . . . . . . . . . . . . . . . . . . . ..246 10.3Motionofthecentreofmass. . . . . . . . . . . . . . . . . . . . . . ..247 10.4Conservationoflinearmomentum. . . . . . . . . . . . . . . . . . . ..250 10.5Rocketmotion. . . . . . . . . . . . . . . . . . . . . . . . . . . . . ..251 10.6Collisiontheory.......... ....................255 10.7Collisionprocessesinthezero-momentumframe.............259 10.8Thetwo-bodyproblem....... ....................264 10.9Two-bodyscattering........ ....................269 10.10Integrablemechanicalsystems. . . . . . . . . . . . . . . . . . . . . ..273 AppendixAModellingbodiesbyparticles...................277 Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ..279 11Theangularmomentumprinciple286 11.1Themomentofaforce. . . . . . . . . . . . . . . . . . . . . . . . . ..286 11.2Angularmomentum........ ....................289 11.3Angularmomentumofarigidbody....................292 11.4Theangularmomentumprinciple. ....................294 11.5Conservationofangularmomentum....................298 11.6Planarrigidbodymotion...... ....................306 11.7Rigidbodystaticsinthreedimensions...................313 Problems. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ..317 viii Contents 3Analyticalmechanics321 12Lagrange’sequationsandconservationprinciples323 12.1Constraintsandconstraintforces . . . . . . . . . . . . . . . . . . . . ..323 12.2Generalisedcoordinates. . . . . . . . . . . . . . . . . . . . . . . . ..325 12.3Configurationspace( q–space).................... ...330 12.4D’Alembert’sprinciple. . . . . . . . . . . . . . . . . . . . . . . . . ..333 12.5Lagrange’sequations. . . . . . . . . . . . . . . . . . . . . . . . . . ..335 12.6Systemswithmovingconstraints. . . . . . . . . . . . . . . . . . . ..344 12.7TheLagrangian. . . . . . . . . . . . . . . . . . . . . . . . . . . . . ..348 12.8Theenergyfunction h . . . . . . . . . . . . . . . . . . . . . . . . . ..351 12.9Generalisedmomenta. . . . . . . . . . . . . . . . . . . . . . . . . ..354 12.10Symmetryandconservationprinciples. . . . . . . . . . . . . . . . . ..356 Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ..361 13ThecalculusofvariationsandHamilton’sprinciple366 13.1Sometypicalminimisationproblems................ ...367 13.2TheEuler–Lagrangeequation. . . . . . . . . . . . . . . . . . . . . ..369 13.3Variationalprinciples. . . . . . . . . . . . . . . . . . . . . . . . . . ..380 13.4Hamilton’sprinciple.... ..................... ...383 Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ..388 14Hamilton’sequationsandphasespace393 14.1SystemsoffirstorderODEs..................... ...393 14.2Legendretransforms. . . . . . . . . . . . . . . . . . . . . . . . . . ..396 14.3Hamilton’sequations.... ..................... ...400 14.4Hamiltonianphasespace(( q, p)–space)............... ...406 14.5Liouville’stheoremandrecurrence................. ...408 Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ..413 4Furthertopics419 15Thegeneraltheoryofsmalloscillations421 15.1Stableequilibriumandsmalloscillations.............. ...421 15.2Theapproximateformsof T andV . . . . . . . . . . . . . . . . . . ..425 15.3Thegeneraltheoryofnormalmodes................. ...429 15.4Existencetheoryfornormalmodes. . . . . . . . . . . . . . . . . . ..433 15.5Sometypicalnormalmodeproblems................ ...436 15.6Orthogonalityofnormalmodes................... ...444 15.7Generalsmalloscillations. ..................... ...447 15.8Normalcoordinates. . . . . . . . . . . . . . . . . . . . . . . . . . ..448 Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ..452

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.