MECHANICS Classical Mechanics Classical Mechanics Second Edition Second Edition Classical Mechanics, Second Edition presents a complete account of the classical mechanics of particles and systems for physics students at the advanced undergraduate level. The book evolved from a set of lecture notes for a course on the subject taught by the author Jupiter at California State University, Stanislaus, for many years. It assumes the reader has been orbit exposed to a course in calculus and a calculus-based general physics course. However, no prior knowledge of differential equations is required. Differential equations and new mathematical Earth methods are developed in the text as the occasion demands. orbit The book begins by describing fundamental concepts, such as velocity and acceleration, Sun upon which subsequent chapters build. The second edition has been updated with two new sections added to the chapter on Hamiltonian formulations, and the chapter on collisions and Initial scattering has been rewritten. The book also contains three new chapters covering Newtonian spacecraft gravity, the Hamilton-Jacobi theory of dynamics, and an introduction to Lagrangian and orbit Hamiltonian formulations for continuous systems and classical fields. To help students develop more familiarity with Lagrangian and Hamiltonian formulations, these essential methods Final are introduced relatively early in the text. spacecraft The topics discussed emphasize a modern perspective, with special note given to concepts orbit that were instrumental in the development of modern physics, for example, the relationship between symmetries and the laws of conservation. Applications to other branches of physics are also included wherever possible. The author provides detailed mathematical manipulations, while limiting the inclusion of the more lengthy and tedious ones. Each chapter contains Outer homework problems of varying degrees of difficulty to enhance understanding of the planet orbit material in the text. This edition also contains four new appendices on D’Alembert’s principle and Lagrange’s equations, derivation of Hamilton’s principle, Noether’s theorem, and conic sections. Second Edition Tai L. Chow K16463 ISBN: 978-1-4665-6998-0 90000 9 781466 569980 K16463_Cover_mech.indd All Pages 3/20/13 10:12 AM Classical Mechanics Second Edition Classical Mechanics Second Edition Tai L. Chow Boca Raton London New York CRC Press is an imprint of the Taylor & Francis Group, an informa business CRC Press Taylor & Francis Group 6000 Broken Sound Parkway NW, Suite 300 Boca Raton, FL 33487-2742 © 2013 by Taylor & Francis Group, LLC CRC Press is an imprint of Taylor & Francis Group, an Informa business No claim to original U.S. Government works Version Date: 20130227 International Standard Book Number-13: 978-1-4665-7000-9 (eBook - PDF) This book contains information obtained from authentic and highly regarded sources. Reasonable efforts have been made to publish reliable data and information, but the author and publisher cannot assume responsibility for the valid- ity of all materials or the consequences of their use. The authors and publishers have attempted to trace the copyright holders of all material reproduced in this publication and apologize to copyright holders if permission to publish in this form has not been obtained. If any copyright material has not been acknowledged please write and let us know so we may rectify in any future reprint. Except as permitted under U.S. Copyright Law, no part of this book may be reprinted, reproduced, transmitted, or uti- lized in any form by any electronic, mechanical, or other means, now known or hereafter invented, including photocopy- ing, microfilming, and recording, or in any information storage or retrieval system, without written permission from the publishers. For permission to photocopy or use material electronically from this work, please access www.copyright.com (http:// www.copyright.com/) or contact the Copyright Clearance Center, Inc. (CCC), 222 Rosewood Drive, Danvers, MA 01923, 978-750-8400. CCC is a not-for-profit organization that provides licenses and registration for a variety of users. For organizations that have been granted a photocopy license by the CCC, a separate system of payment has been arranged. Trademark Notice: Product or corporate names may be trademarks or registered trademarks, and are used only for identification and explanation without intent to infringe. Visit the Taylor & Francis Web site at http://www.taylorandfrancis.com and the CRC Press Web site at http://www.crcpress.com To Robert Youngme and David Lori Contents Preface..............................................................................................................................................xv Author ............................................................................................................................................xvii Chapter 1 Kinematics: Describing the Motion .............................................................................1 1.1 Introduction .......................................................................................................1 1.2 Space, Time, and Coordinate Systems ..............................................................1 1.3 Change of Coordinate System (Transformation of Components of a Vector) ........................................................................................................3 1.4 Displacement Vector ..........................................................................................8 1.5 Speed and Velocity ............................................................................................8 1.6 Acceleration .....................................................................................................10 1.6.1 Tangential and Normal Acceleration..................................................11 1.7 Velocity and Acceleration in Polar Coordinates .............................................14 1.7.1 Plane Polar Coordinates (r, θ) ............................................................14 1.7.2 Cylindrical Coordinates (ρ, ϕ, z) ........................................................15 (cid:31) 1.7.3 Spherical Coordinates (r, θ, ϕ) ..........................................................16 1.8 Angular Velocity and Angular Acceleration ...................................................18 1.9 Infinitesimal Rotations and the Angular Velocity Vector ...............................19 Chapter 2 Newtonian Mechanics ................................................................................................25 2.1 The First Law of Motion (Law of Inertia) .......................................................25 2.1.1 Inertial Frames of Reference ..............................................................26 2.2 The Second Law of Motion; the Equations of Motion ....................................27 2.2.1 The Concept of Force .........................................................................28 2.3 The Third Law of Motion ................................................................................32 2.3.1 The Concept of Mass ..........................................................................32 2.4 Galilean Transformations and Galilean Invariance ........................................34 2.5 Newton’s Laws of Rotational Motion ..............................................................36 2.6 Work, Energy, and Conservation Laws ...........................................................37 2.6.1 Work and Energy ................................................................................38 2.6.2 Conservative Force and Potential Energy ..........................................39 2.6.3 Conservation of Energy ......................................................................40 2.6.4 Conservation of Momentum ...............................................................42 2.6.5 Conservation of Angular Momentum ................................................42 2.7 Systems of Particles .........................................................................................46 2.7.1 Center of Mass....................................................................................46 2.7.2 Motion of CM .....................................................................................48 2.7.3 Conservation Theorems .....................................................................49 References ..................................................................................................................56 Chapter 3 Integration of Newton’s Equation of Motion ..............................................................57 3.1 Introduction .....................................................................................................57 3.2 Motion Under Constant Force .........................................................................58 vii © 2010 Taylor & Francis Group, LLC viii Contents 3.3 Force Is a Function of Time ............................................................................63 3.3.1 Impulsive Force and Green’s Function Method .................................66 3.4 Force Is a Function of Velocity .......................................................................67 3.4.1 Motion in a Uniform Magnetic Field .................................................71 3.4.2 Motion in Nearly Uniform Magnetic Field ........................................73 3.5 Force Is a Function of Position ........................................................................74 3.5.1 Bounded and Unbounded Motion ......................................................75 3.5.2 Stable and Unstable Equilibrium .......................................................76 3.5.3 Critical and Neutral Equilibrium .......................................................78 3.6 Time-Varying Mass System (Rocket System) .................................................79 Chapter 4 Lagrangian Formulation of Mechanics: Descriptions of Motion in Configuration Space ...................................................................................................85 4.1 Generalized Coordinates and Constraints .......................................................85 4.1.1 Generalized Coordinates ....................................................................85 4.1.2 Degrees of Freedom ...........................................................................85 4.1.3 Configuration Space ...........................................................................86 4.1.4 Constraints..........................................................................................86 4.1.4.1 Holonomic and Nonholonomic Constraints .......................86 4.1.4.2 Scleronomic and Rheonomic Constraints ..........................88 4.2 Kinetic Energy in Generalized Coordinates ...................................................88 4.3 Generalized Momentum ..................................................................................90 4.4 Lagrangian Equations of Motion .....................................................................91 4.4.1 Hamilton’s Principle ...........................................................................91 4.4.2 Lagrange’s Equations of Motion from Hamilton’s Principle .............92 4.5 Nonuniqueness of the Lagrangian .................................................................102 4.6 Integrals of Motion and Conservation Laws .................................................104 4.6.1 Cyclic Coordinates and Conservation Theorems .............................104 4.6.2 Symmetries and Conservation Laws ................................................106 4.6.2.1 Homogeneity of Time and Conservation of Energy .........106 4.6.2.2 Spatial Homogeneity and Momentum Conservation ........107 4.6.2.3 Isotropy of Space and Angular Momentum Conservation ..................................................................108 4.6.2.4 Noether’s Theorem ...........................................................110 4.7 Scale Invariance ............................................................................................111 4.8 Nonconservative Systems and Generalized Potential ...................................112 4.9 Charged Particle in Electromagnetic Field ....................................................112 4.10 Forces of Constraint and Lagrange’s Multipliers ..........................................114 4.11 Lagrangian versus Newtonian Approach to Classical Mechanics ................119 Reference ..................................................................................................................123 Chapter 5 Hamiltonian Formulation of Mechanics: Descriptions of Motion in Phase Spaces ..................................................................................................................125 5.1 The Hamiltonian of a Dynamic System ........................................................125 5.1.1 Phase Space ......................................................................................126 5.2 Hamilton’s Equations of Motion ...................................................................126 5.2.1 Hamilton’s Equations from Lagrange’s Equations ...........................126 5.2.2 Hamilton’s Equations from Hamilton’s Principle ............................128 © 2010 Taylor & Francis Group, LLC
Description: