ebook img

Clamp loader of Escherichia coli DNA Polymerase III : kinetics of the ATP-dependent steps in the sliding-clamp loading reaction PDF

306 Pages·2003·8 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Clamp loader of Escherichia coli DNA Polymerase III : kinetics of the ATP-dependent steps in the sliding-clamp loading reaction

THECLAMPLOADEROFEscherichiacoliDNAPOLYMERASEIII: KINETICSOFTHEATP-DEPENDENTSTEPSINTHESLIDING-CLAMP LOADINGREACTION By CHRISTOPHERR. WILLIAMS ADISSERTATIONPRESENTEDTOTHEGRADUATESCHOOL OFTHEUNIVERSITYOFFLORIDAINPARTIALFULFILLMENT OFTHEREQUIREMENTSFORTHEDEGREEOF DOCTOROFPHILOSOPHY UNIVERSITYOFFLORIDA 2003 Copyright2003 by ChristopherR.Williams Thisdocumentisdedicatedtomyparents,family,andHeatherRunyan. ACKNOWLEDGMENTS ForemostIwouldliketothankmyadvisor,LindaBloom,Ph.D.,foroutstanding guidanceandprovidinganexceptionalworkingenvironmentinastate-of-the-artresearch laboratory. IthankmycommitteeatUF,Drs.DanielL. Purich,ArthurS.Edison,J.Bert Flanagen,andAlfredS.Lewin,fortheirassistancenotonlyinguidingmyproject,butin guidingmetobecomemorewiseandperceptiveasascientist. Imustalsoacknowledge mycommitteeatArizonaStateUniversity,Drs.NealWoodbury,YuriL. Lyubchenko, andKennethJ.Hoober,fortheirassistanceintheearlystagesofthisdissertationproject. IacknowledgeManjuHingorani,Ph.D.,forhelpfuldiscussionsattheKeystone Symposiameetingsandproteinpreparation,MikeO'Donnell,Ph.D.forthegenerous giftsofclamploaders,MartinWebb,Ph.D.,MyronF. Goodman,Ph.D.,andJeffery Bertramforthegiftofthephosphatebindingproteinplasmid,andhelpin characterizationanduseofMDCC-PBP,andPetrKuzmic,Ph.D.,forcontributionofthe customversionofDynaFitandassistancewithkineticmodeling. Iwouldliketothank myfollowingcolleaguesfortheirfriendshipandinvaluablediscussionsregardingthis projectandscienceingeneral:BrandonAson,RyanShaw,JohnC.Lopez,Gabriel Montaho,Ph.D.,GregoryUyeda,JoseClemente,Ph.D.,JoyceFeller,Ph.D. Finally,I wouldliketothankmyparentsfortheirunwaveringsupportofmyendevours,andfor purchasingmyfirstmicroscopeandchemistrysetsyearsago. TABLEOFCONTENTS Page ACKNOWLEDGMENTS' iv ., LISTOFTABLES * LISTOFFIGURES » ABSTRACT xiv : CHAPTER 1 INTRODUCTION-STATEMENTOFPROBLEM 1 TheProcessiveEscherichiacoliDNAPolymeraseIIIHoloenzyme 1 DNAPolymeraseIIIHoloenzyme 1 ThepSlidingClamp 2 TheDnaXClampLoader-StoichiometryandOrganizationofSubunits 3 ClampLoaderSubunitFunctions 4 TheMechanismofpClampLoading 5 ImportanceoftheE.coliModelReplicationSystem 7 TheGeneralProblemUnderStudyandResearchQuestionsAddressed 8 ConformationalDynamicsoftheClampLoadingMachine 10 EnhancementoftheClampLoadingMachinebyitsClamp 13 The%andySubunitsareRequiredforOptimumActivityoftheClampLoaderl4 ApplicationoftheAnalysesoftheClampLoadingMachinetoOtherComplex MolecularMachines 17 NovelHybridDevicesBasedontheClampLoaderandSlidingClamp 19 "Off-the-WaH"ExampleoftheClampandClampLoaderinaNovelDevice...20 DesignofResearchProject 21 2 LITERATUREREVIEW 24 DNAReplicationinEscherichiacoli 24 DNAPolymeraseIIIHoloenzyme 25 Thet.SubunitistheCoordinatorofPolIIIHoloenzymeFunctionand Processivity 29 Structureofthe|3SlidingClampProcessivityProtein 31 TheDnaXClampLoadingMachine 35 TheAAA+SuperfamilyofMotorProteins 40 X-rayCrystalStructureoftheClampLoadingMachine 45 StructureoftheNucleotideBindingSiteandtheProposedConformational ChangeoftheySubunit 48 X-RayCrystalStructureofthe8SubunitBoundtoa|3Monomerandthe ' MechanismforOpeningthePSlidingClamp 52 DNAstructuralrequirementsforpclamploadingbyycomplex 56 MechanismofthepClampLoadingReactionCyclebyyComplex 60 MutationsofthePClamp,andyComplex8'andySubunits:Effectsonthe ClampLoadingMechanism 65 TheClampLoadingMachineWithinPolymeraseIIIHoloenzyme 68 ClampsandClampLoadersofBacteriophage,Eukaryotic,and ArchaealOrganisms 71 BacteriophageT4ClampandClamploader 73 EukaryoticPCNAClampandReplicationFactor-CClampLoader 75 ArchaealPCNAClampandReplicationFactor-CClampLoader 80 MATERIALSANDMETHODS 84 Proteins,Reagents,andOligonucleotideSubstrates 84 DNAPolymeraseIIIProteins 84 Reagents 85 OligonucleotideSubstrates 85 PurificationofEscherichiacoliPhosphateBindingProtein 86 LabelingofPhosphateBindingProteinwithMDCC 89 CharacterizationofMDCC-LabeledPhosphateBindingProtein 90 RemovalofFree-InorganicPhosphate(P,)Contaminationwiththe"Pi-mop"..91 ConcentrationandEfficiencyofLabelingofMDCC-PBP 91 Characterizationofthefluorescence-molarresponseofMDCC-PBPtoPi 92 ActiveSiteTitrationofMDCC-PBP 93 FluorescenceAnisotropyBindingAssays 94 CalculationofAnisotropy 94 Steady-stateMeasurementofClampLoader-RhX-DNABindingKinetics 95 Pre-Steady-StateMeasurementofClampLoader-RhX-DNABinding Kinetics 99 Fluorescence-basedMDCC-PBPATPHydrolysis(ATPase)Assay 101 Steady-StateKineticsofATPhydrolysis 101 Pre-Steady-StateKineticsofATPHydrolysis 104 ComputerModelingofATPHydrolysisKineticData 109 CorrelatedPre-Steady-StateMDCC-PBPATPaseAssaysandFluorescence AnisotropyBindingAssays 110 Stopped-FlowDeadTimeDeterminations 112 DeterminationoftheDeadTimefortheBiologicSFM-4Stopped-Flow 112 DeterminationoftheAppliedPhotophysicsSX.18MVStopped-Flow ReactionAnalyzerSequential-andSingle-mixDeadTimes 114 8 4 ATP-DEPENDENTCONFORMATIONALCHANGEINTHECLAMPLOADER11 Introduction 118 Steady-StateCharacterizationofyComplexATPHydrolysis,DNABindingand ClampLoadingActivities 120 EnhancementofSteady-StateATPHydrolysisKineticsofyComplexbyp clamp 120 Steady-StateDNABindingandClampLoadingActivitiesofyComplex 122 Pre-Steady-StateKineticsofDNA-DependentATPHydrolysisbyyComplex 127 Pre-Steady-StateMDCC-PBPATPaseAssaysforyComplexintheAbsence andPresenceofpClamp 127 Pre-Steady-StateMDCC-PBPATPaseAssaysatDifferentConcentrationsofy ComplexinthePresenceofp 129 ATPyS-ChaseofPre-Steady-StateATPHydrolysisActivitybyyComplex...131 Pre-Steady-StateKineticsofpClampLoadingbyyComplexInitiatedat DifferentStepsoftheReactionCycle 135 KineticsofClampLoadingwhenyComplexisEquilibratedwithATP 135 KineticsofClampLoadingwhenyComplexisEquilibratedwithATPandP 137 KineticsofClampLoadingwhenyComplexisAddedDirectlytoaSolution ofATP,p,andDNA 141 KineticsofATPHydrolysisDuringClampLoadingwhenyComplexis EquilibratedwithATP 142 KineticsofATPHydrolysiswhenyComplexisnotEquilibratedwithATP 144 KineticsofFormationoftheTwoPopulationsofyComplex 146 ComputerModelingofATPHydrolysisReactionKinetics 149 Discussion 153 5 CHARACTERIZATIONOFTHEMINIMALCLAMPLOADERCOMPLEX ANDCOMPARISONTOGAMMACOMPLEX 163 Introduction 163 y388'istheMinimalClampLoaderComplexWhichCanBindDNA 165 AnalysisofDNABindingActivityoftheIndividualSubunitsor Sub-complexesoftheClampLoader 165 AnalysisoftheDNABindingActivityofy388'MinimalComplexinthe AbsenceandPresenceofp 167 ComparisonofpClampBindingAffinityoftheMinimalComplexandyComplexl69 EquilibriumPpyreneBindingActivityoftheMinimalComplexandyComplex169 ApparentDissociationConstantforATPBindingtheMinimalComplexory Complex 171 KineticsofATPHydrolysisbytheMinimalComplexMeasuredUsingtheMDCC- PBPATPaseAssay 173 Steady-StateATPHydrolysisKineticsofy388'MinimalComplexinthe AbsenceandPresenceofpClamp 173 Pre-Steady-StateKineticsofATPHydrolysisbyy388' MinimalComplexin theAbsenceandPresenceofpClamp 176 KineticsofATPHydrolysiswhentheMinimalComplexisnotequilibrated withATP 180 ATPyS-ChaseofPre-Steady-StateATPHydrolysisActivitybythey388' MinimalComplex I...183 ATPyS-ChaseofSteady-StateATPHydrolysisActivitybythe7386'Minimal Complexor7Complex 186 ClampLoadingActivityoftheMinimalComplexisMoreSensitivetoADP than7Complex 188 Pre-Steady-StateKineticsofClampLoadingbytheMinimalComplexInitiatedat DifferentStepsoftheReactionCycle 190 KineticsofClampLoadingwhentheMinimalComplexisEquilibratedwith ATPandP 191 KineticsofClampLoadingwhentheMinimalComplexisEquilibratedwith ATP 194 KineticsofClampLoadingWhentheMinimalComplexisMixedDirectly withaSolutionofATP,P,andDNA 195 DirectRealTimeCorrelationoftheMinimalComplexDNABindingandATP HydrolysisKineticsinthePresenceandAbsenceofpClamp 196 Discussion 200 UnderstandingyComplexKineticsbyCharacterizationofandComparison withy388'MinimalComplex 200 7388' istheMinimalComplexwithDNABindingAbility,andBindsATPand PwithAffinitySimilartoyComplex 202 Pre-Steady-StateATPHydrolysisandDNABindingKinetics:Analysesofthe ActiveandInactiveClampLoaderStates 202 ThexandySubunits,MissingfromtheMinimalComplex,MayFacilitatethe ConformationalDynamicsofyComplex 210 PClampEnhancestheSwitchfromInactivetoActiveClampLoader Populations 211 ExperimentswhentheMinimalComplexwasnotEquilibratedwithATP RevealSlowerConformationalChangeKineticsthanyComplex 213 TheNatureofNucleotideBindingtotheMinimalComplexandyComplex..214 6 CONCLUSIONSANDRECOMMENDATIONS 221 Introduction 221 Steady-StateKineticsoftheClampLoaderintheAbsenceorPresenceofP 224 KineticsofATP-DependentConformationalChangeswithintheClampLoader...226 APossibleMechanismforpClampEnhancementofClampLoaderActivity 233 TheMissing%andv|/SubunitsareResponsiblefortheKineticDifferences BetweentheMinimalComplexandyComplex 236 The%and>)/SubunitsareE. coliClampLoaderAAA+AdaptorProteins 237 ProgrammaticRecommendations 239 Pre-Steady-StateKineticsofpClampBinding 239 FluorescenceLifetimeMeasurementofMDCC-PBPTitratedwithInorganic Phosphate 241 FurtherInvestigationofATPBindingandNucleotideExchangebytheClamp Loader 242 AnalysisofClampLoaderConformationalDynamicsbyCircularDichroism Spectroscopy 244 IdentificationofthePutativeClampLoaderDNABindingSurface 245 TheiandyAAA+adaptorhypothesis 246 APPENDIX COMPUTERMODELINGOFEXPERIMENTALKINETICDATA 248 DynaFitScriptForFittingShowninFigure4-9 248 DynaFitScriptForFittinginShowninFigure4-10C 249 DynaFitScriptForFittinginShowninFigure5-6 251 SimulationMechanismsforEquilibrationSteps:KinTekSimProgram 252 DynaFitOutputIndices 255 FittingforyComplexDatainFigure4-9 255 FittingforyComplexDatainFigure4-IOC 258 FittingforMinimalComplexDatainFigure5-6 260 FittingforMinimalComplexDataForEstimationofConformationalRate ConstantsFromaSingleDataset 262 AlternateDynafitModelwitha"Branch"StepatAfterHydrolysisofSecondATP265 AlternateDynafitModelAppliedtoyComplexinFigure4-9 265 AlternateDynafitModelAppliedtoyComplexinFigure4-10C 267 AlternateDynafitModelAppliedtotheMinimalComplexinFigure5-7 269 AlternateDynafitModelAppliedtoyComplexinaDNABindingAssayinthe AbsenceofPClamp 271 LISTOFREFERENCES 274 BIOGRAPHICALSKETCH 287 LISTOFTABLES Table page 2-1. Clampsandclamploadersthroughevolution 72 3-1. Assayandproteinbuffers 85 3-2. TG-plusmediacontents 87 4-1. Steady-stateATPhydrolysiskineticsofycomplexintheabsenceand presenceofpa 121 5-1. Steady-stateATPhydrolysiskineticparametersfortheminimalcomplexandy complexintheabsenceandpresenceofp" 174 5-2. Steady-stateATPyS-chaseassayresults:comparisonoftheminimalcomplexandy complexinthepresenceorabsenceofP 187

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.