ebook img

Circuits and Algorithms for Pipelined ADCs in Scaled CMOS Technologies Lane Gearle Brooks PDF

184 Pages·2009·13.42 MB·English
by  
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Circuits and Algorithms for Pipelined ADCs in Scaled CMOS Technologies Lane Gearle Brooks

Circuits and Algorithms for Pipelined ADCs in Scaled CMOS Technologies by Lane Gearle Brooks Submitted to the Department of Electrical Engineering and Computer Science in partial fulfillment of the requirements for the degree of Doctor of Philosophy in Computer Science and Engineering at the MASSACHUSETTS INSTITUTE OF TECHNOLOGY June 2008 c Massachusetts Institute of Technology 2008. All rights reserved. ! Author .............................................................. Department of Electrical Engineering and Computer Science May 6, 2008 Certified by.......................................................... Hae-Seung Lee Professor Thesis Supervisor Certified by.......................................................... Gregory Wornell Professor Thesis Supervisor Accepted by......................................................... Terry P. Orlando Chairman, Department Committee on Graduate Students 2 Circuits and Algorithms for Pipelined ADCs in Scaled CMOS Technologies by Lane Gearle Brooks Submitted to the Department of Electrical Engineering and Computer Science on May 6, 2008, in partial fulfillment of the requirements for the degree of Doctor of Philosophy in Computer Science and Engineering Abstract CMOS technology scaling is creating significant issues for analog circuit design. For example, reduced signal swing and device gain make it increasingly difficult to realize high-speed, high-gain feedback loops traditionally used in switched capacitor circuits. Thisresearchinvolvestwocomplementarymethodsforaddressingscalingissues. First isthedevelopmentoftwoblinddigitalcalibrationtechniques. DecisionBoundaryGap Estimation (DBGE) removes static non-linearities and Chopper Offset Estimation (COE) nulls offsets in pipelined ADCs. Second is the development of circuits for a new architecture called zero-crossing based circuits (ZCBC) that is more amenable to scaling trends. To demonstrate these circuits and algorithms, two different ADCs were designed: an 8 bit, 200MS/s in TSMC 180nm technology, and a 12 bit, 50 MS/s in IBM 90nm technology. Together these techniques can be enabling technologies for bothpipelinedADCsandgeneralmixedsignaldesignindeepsub-microntechnologies. Thesis Supervisor: Hae-Seung Lee Title: Professor Thesis Supervisor: Gregory Wornell Title: Professor 3 4 Acknowledgments I would like to thank my advisers, family, and friends for helping and supporting me with this work. I would like to thank NDSEG, CICS, and DARPA for funding my research. 5 6 Contents 1 Introduction 19 1.1 Pipelined ADC Overview . . . . . . . . . . . . . . . . . . . . . . . . . 23 1.2 Comparator Based Switched Capacitor Circuits . . . . . . . . . . . . 26 1.3 Pipelined ADC Error Models . . . . . . . . . . . . . . . . . . . . . . 27 1.3.1 Finite Opamp Gain . . . . . . . . . . . . . . . . . . . . . . . . 27 1.3.2 Finite Current Source Output Impedance . . . . . . . . . . . . 28 1.3.3 Capacitor Mismatch . . . . . . . . . . . . . . . . . . . . . . . 31 1.3.4 Charge Injection and Stage Offset . . . . . . . . . . . . . . . . 32 1.3.5 Bit Decision Comparator Offset . . . . . . . . . . . . . . . . . 32 1.3.6 Errors from Multiple Stages . . . . . . . . . . . . . . . . . . . 33 1.4 Redundancy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 2 Decision Boundary Gap Estimation 39 2.1 Gap Correction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41 2.2 Gap Estimation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44 2.2.1 Max-Min Gap Estimator . . . . . . . . . . . . . . . . . . . . . 46 2.2.2 Bin-Reshaping Gap Estimator . . . . . . . . . . . . . . . . . . 48 2.2.3 Cost-Minimizing Estimator . . . . . . . . . . . . . . . . . . . 51 2.2.4 Estimator Discussion . . . . . . . . . . . . . . . . . . . . . . . 55 2.3 Simulation Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58 2.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60 7 3 Zero-Crossing Based Circuits 61 3.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61 3.1.1 Opamp-Based Switch Capacitor Circuits . . . . . . . . . . . . 61 3.1.2 Comparator-Based Switched Capacitor Circuits . . . . . . . . 62 3.2 Zero-Crossing Based Circuits . . . . . . . . . . . . . . . . . . . . . . . 64 3.3 ZCBC Pipelined ADC Implementation . . . . . . . . . . . . . . . . . 67 3.3.1 DZCD Design . . . . . . . . . . . . . . . . . . . . . . . . . . . 67 3.3.2 Current Source Splitting . . . . . . . . . . . . . . . . . . . . . 68 3.3.3 Shorting Switches . . . . . . . . . . . . . . . . . . . . . . . . . 68 3.3.4 Reference Voltage Switches . . . . . . . . . . . . . . . . . . . . 70 3.3.5 Current Source Implementation . . . . . . . . . . . . . . . . . 71 3.3.6 Bit Decision Flip-Flops . . . . . . . . . . . . . . . . . . . . . . 72 3.3.7 First Stage Considerations . . . . . . . . . . . . . . . . . . . . 73 3.4 Experimental Results . . . . . . . . . . . . . . . . . . . . . . . . . . . 74 3.5 Power Efficiency Analysis . . . . . . . . . . . . . . . . . . . . . . . . 76 3.5.1 DZCD Noise Analysis . . . . . . . . . . . . . . . . . . . . . . 76 3.5.2 Comparison to Original CBSC Implementation . . . . . . . . 84 3.5.3 FOM Discussion . . . . . . . . . . . . . . . . . . . . . . . . . 85 3.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86 4 Chopper Offset Estimation 89 4.1 Chopper Offset Estimation . . . . . . . . . . . . . . . . . . . . . . . . 92 4.1.1 Traditional Chopper Stabilization . . . . . . . . . . . . . . . . 92 4.1.2 Chopper Offset Estimation (COE) . . . . . . . . . . . . . . . 93 4.1.3 COE Decimation . . . . . . . . . . . . . . . . . . . . . . . . . 95 4.2 Random Chopping Vector . . . . . . . . . . . . . . . . . . . . . . . . 96 4.2.1 Minimum Variance Linear Unbiased Estimator . . . . . . . . . 97 4.2.2 MVLU Performance . . . . . . . . . . . . . . . . . . . . . . . 99 4.2.3 MVLU Example . . . . . . . . . . . . . . . . . . . . . . . . . 99 4.2.4 Distortion Performance . . . . . . . . . . . . . . . . . . . . . . 101 8 4.2.5 Random vs. Deterministic Chopping . . . . . . . . . . . . . . 102 4.3 Additional COE Architectures . . . . . . . . . . . . . . . . . . . . . . 103 4.3.1 Input Referred Offset Compensation with COE . . . . . . . . 104 4.3.2 COE for Pipelined ADCs . . . . . . . . . . . . . . . . . . . . . 105 4.3.3 Per-Stage COE for Pipelined ADCs . . . . . . . . . . . . . . . 106 4.3.4 Multistage Chopping . . . . . . . . . . . . . . . . . . . . . . . 108 4.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109 5 ZCBC Revisited 111 5.1 System Level Improvements . . . . . . . . . . . . . . . . . . . . . . . 111 5.1.1 Embedded SRAM and Programmable Output Drivers . . . . . 112 5.1.2 Triple Well for Improved Substrate Isolation . . . . . . . . . . 112 5.1.3 On-chip Bias and Voltage Generation . . . . . . . . . . . . . . 112 5.1.4 Single Ground . . . . . . . . . . . . . . . . . . . . . . . . . . . 114 5.1.5 Packaging Considerations . . . . . . . . . . . . . . . . . . . . 115 5.2 Fully Differential ZCBC . . . . . . . . . . . . . . . . . . . . . . . . . 115 5.2.1 Common Mode Control . . . . . . . . . . . . . . . . . . . . . 118 5.2.2 Symmetry for Improved Power Supply Noise Rejection . . . . 119 5.2.3 Differential Zero-Crossing Detector . . . . . . . . . . . . . . . 122 5.2.4 Chopper Offset Estimation . . . . . . . . . . . . . . . . . . . . 124 5.3 Voltage References . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125 5.3.1 Off-chip Reference Voltage Issues . . . . . . . . . . . . . . . . 126 5.3.2 Voltage Reference Switching via Capacitor Splitting . . . . . . 128 5.3.3 Capacitor Splitting with Fully Differential Designs . . . . . . . 132 5.4 Redundancy For Increased Signal Range . . . . . . . . . . . . . . . . 135 5.5 Complete ZCBC Pipeline Stage . . . . . . . . . . . . . . . . . . . . . 139 5.6 Sub-ADC Design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 142 5.6.1 Bit Decision Comparator Design . . . . . . . . . . . . . . . . . 145 5.7 Noise Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 149 5.7.1 Dynamics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 149 9 5.7.2 Input Referred Noise Derivation . . . . . . . . . . . . . . . . . 150 5.7.3 Substituting Real Circuit Parameters . . . . . . . . . . . . . . 154 5.7.4 Linearity from Finite Current Source Impedance . . . . . . . . 156 5.7.5 Differential ZCD Design Methodology . . . . . . . . . . . . . . 157 5.7.6 Number of Ramps Analysis . . . . . . . . . . . . . . . . . . . 161 5.8 Experimental Results . . . . . . . . . . . . . . . . . . . . . . . . . . . 163 5.8.1 Overall Performance . . . . . . . . . . . . . . . . . . . . . . . 163 5.8.2 ZCD Offset Performance . . . . . . . . . . . . . . . . . . . . . 164 5.8.3 I/O Noise Coupling . . . . . . . . . . . . . . . . . . . . . . . . 167 5.8.4 BDC Offset . . . . . . . . . . . . . . . . . . . . . . . . . . . . 168 5.9 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 170 6 Conclusion 171 6.1 ZCBC Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . 171 6.1.1 Reference Voltages . . . . . . . . . . . . . . . . . . . . . . . . 171 6.1.2 PVT Hardening . . . . . . . . . . . . . . . . . . . . . . . . . . 173 6.1.3 Common Mode Feedback . . . . . . . . . . . . . . . . . . . . . 175 6.2 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 176 10

Description:
Together these techniques can be enabling technologies for both pipelined ADCs and general mixed signal design in deep sub-micron technologies.
See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.