ebook img

Circuit Oriented Electromagnetic Modeling using the PEEC Techniques PDF

445 Pages·2017·6.448 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Circuit Oriented Electromagnetic Modeling using the PEEC Techniques

(cid:2) CIRCUIT ORIENTED ELECTROMAGNETIC MODELING USING THE PEEC TECHNIQUES ALBERTE.RUEHLI MissouriUniversityofScienceandTechnology,Rolla,MO GIULIOANTONINI UniversitàdegliStudidell’Aquila,Italy LIJUNJIANG TheUniversityofHongKong,Pokfulam,HongKong (cid:2) (cid:2) Copyright©2017byTheInstituteofElectricalandElectronicsEngineers,Inc. PublishedbyJohnWiley&Sons,Inc.,Hoboken,NewJersey. PublishedsimultaneouslyinCanada. LibraryofCongressCataloging-in-PublicationData: Names:Ruehli,A.E.(AlbertE.),1937-author.|Antonini,Giulio,1969- author.|Jiang,Lijun1970-author. Title:Thepartialelementequivalentcircuitmethodforelectro-magneticand circuitproblems:aparadigmforEMmodeling/AlbertE.Ruehli,Giulio Antonini,LijunJiang. Description:Hoboken,NewJersey:JohnWiley&Sons,2016.|Includes bibliographicalreferencesandindex. Identifiers:LCCN2016026830(print)|LCCN2016049198(ebook)|ISBN 9781118436646(cloth)|ISBN9781119078395(pdf)|ISBN9781119078401 (epub) Subjects:LCSH:Electriccircuits–Mathematicalmodels.| Electromagnetism–Mathematicalmodels. Classification:LCCTK3001.R682016(print)|LCCTK3001(ebook)|DDC 621.301/51–dc23 LCrecordavailableathttps://lccn.loc.gov/2016026830 CoverDesign:Wiley CoverImage:©Vectorig/Gettyimages Typesetin10/12pt,TimesLTStdbySPiGlobal,Chennai,India. PrintedintheUnitedStatesofAmerica. (cid:2) (cid:2) CONTENTS DEDICATION xv PREFACE xvii ACKNOWLEDGEMENTS xxi (cid:2) ACRONYMS xxv (cid:2) 1 Introduction 1 References, 6 2 CircuitAnalysisforPEECMethods 9 2.1 CircuitAnalysisTechniques, 9 2.2 OverallElectromagneticandCircuitSolverStructure, 9 2.3 CircuitLaws, 11 2.3.1 Kirchoff’sCurrentLaw, 11 2.3.2 Kirchoff’sVoltageLaw, 11 2.3.3 BranchImpedances, 12 2.3.4 IncompleteKirchhoff’sCurrentLaw, 12 2.4 FrequencyandTimeDomainAnalyses, 13 2.5 FrequencyDomainAnalysisFormulation, 14 2.6 TimeDomainAnalysisFormulations, 17 2.6.1 NumericalIntegrationofTimeDomainDifferentialEquations, 18 2.6.2 ListofIntegrationMethodsforPEECSolver, 20 2.6.3 InitialConditionsforTimeSolverwithDelays, 22 2.7 GeneralModifiedNodalAnalysis(MNA), 22 2.7.1 MatrixKirchhoff’sCurrentLawandStamps, 23 2.7.2 MatrixKirchhoff’sVoltageLaw, 24 2.7.3 MatrixKCLSolutionofMNAEquationsforPEEC, 25 2.7.4 MatrixKCLforConductorExample, 27 (cid:2) (cid:2) 2.8 IncludingFrequencyDependentModelsinTimeDomainSolution, 28 2.9 IncludingFrequencyDomainModelsinCircuitSolution, 31 2.9.1 EquivalentCircuitforRationalApproximationofTransfer Functions, 31 2.9.2 InclusionofFrequencyDomainModelsinaTimeDomainCircuit Solver, 34 2.9.3 GeneralInclusionofFrequencyDomainAdmittanceModels, 36 2.9.4 State-SpaceandDescriptorRepresentations, 37 2.10 RecursiveConvolutionSolution, 39 2.10.1 ConventionalConvolution, 39 2.10.2 RecursiveConvolution, 40 2.11 CircuitModelswithDelaysorRetardation, 41 2.11.1 InclusionofDelaysintheCircuitDomain, 42 Problems, 43 References, 44 3 Maxwell’sEquations 47 3.1 Maxwell’sEquationsforPEECSolutions, 47 3.1.1 Maxwell’sEquationsintheDifferentialForm, 47 3.1.2 Maxwell’sEquationsintheIntegralForm, 49 3.1.3 Maxwell’sEquationsandKirchhoff’sCircuitLaws, 50 3.1.4 BoundaryConditions, 51 3.2 AuxiliaryPotentials, 52 (cid:2) 3.2.1 MagneticVectorPotentialAandElectricScalarPotentialΦ , 52 (cid:2) e 3.2.2 ElectricVectorPotentialFandMagneticScalarPotentialΦ , 53 m 3.2.3 ImportantFundamentalRelationships, 54 3.3 WaveEquationsandTheirSolutions, 54 3.3.1 WaveEquationsforEandH, 54 3.3.2 WaveEquationsforA,F,andΦ , 55 e 3.3.3 SolutionoftheHelmholtzEquation, 56 3.3.4 ElectricFieldIntegralEquation, 57 3.4 Green’sFunction, 58 3.4.1 NotationUsedforWaveNumberandFourierTransform, 58 3.4.2 FullWaveFreeSpaceGreen’sFunction, 59 3.5 EquivalencePrinciples, 60 3.5.1 VolumeEquivalencePrinciple, 61 3.5.2 Huygens’EquivalencePrinciple, 62 3.6 NumericalSolutionofIntegralEquations, 63 Problems, 65 References, 66 4 CapacitanceComputations 67 4.1 MulticonductorCapacitanceConcepts, 68 4.2 CapacitanceModels, 69 4.2.1 CapacitanceModelsforMulticonductorGeometries, 69 4.2.2 ShortCircuitCapacitances, 70 4.2.3 CoefficientofPotentialMatrixPp, 71 (cid:2) (cid:2) 4.2.4 CapacitanceofConductorSystems, 72 4.2.5 EliminationofaFloatingConductorNode, 72 4.2.6 FloatingorReferenceFreeCapacitances, 73 4.3 SolutionTechniquesforCapacitanceProblems, 74 4.3.1 DifferentialEquation(DE)MethodsforCapacitance Computations, 76 4.4 MeshingRelatedAccuracyProblemsforPEECModel, 79 4.4.1 ImpactofMeshingonCapacitancesandStabilityandPassivity, 80 4.5 RepresentationofCapacitiveCurrentsforPEECModels, 82 4.5.1 QuasistaticCapacitance–basedModel, 82 4.5.2 CurrentSource-BasedModelfortheCapacitances, 82 4.5.3 Potential-BasedModelfortheCapacitances, 84 Problems, 85 References, 86 5 InductanceComputations 89 5.1 LoopInductanceComputations, 90 5.1.1 LoopInductanceComputationinTermsofPartialInductances, 91 5.1.2 CircuitModelforPartialInductanceLoop, 93 5.2 InductanceComputationUsingaSolutionoraCircuitSolver, 95 5.3 FluxLoopsforPartialInductance, 95 5.4 InductancesofIncompleteStructures, 96 5.4.1 Open-LoopInductances, 96 (cid:2) (cid:2) 5.4.2 Open-LoopMacromodels, 97 5.4.3 ExamplesforOpen-LoopInductances, 98 5.5 ComputationofPartialInductances, 99 5.5.1 ApproximateFormulasforPartialInductances, 100 5.5.2 InductanceComputationsforLargeAspectRatioConductors, 101 5.6 GeneralInductanceComputationsUsingPartialInductancesandOpenLoop Inductance, 107 5.6.1 ClosingtheLoopforOpen-LoopProblems, 108 5.7 DifferenceCellPairInductanceModels, 109 5.7.1 InductancesforTransmissionLine-TypeGeometries, 109 5.7.2 ApproximateInductiveCouplingCalculationBetweenDifferenceCell Pairs, 111 5.7.3 InductanceofFiniteandSemi-InfiniteLengthTL, 113 5.7.4 PlanePairPEECModelsBasedonDifferenceCurrents, 114 5.7.5 ParallelPlanePEECModeling, 114 5.7.6 PEECInductancePlaneModelwithOrthogonalMeshing, 115 5.7.7 MeshReductionWithoutCouplingsofNonparallelInductances, 117 5.8 PartialInductanceswithFrequencyDomainRetardation, 119 5.8.1 ThinWireExampleforRetardedPartialInductances, 122 5.8.2 GeneralCaseforSeparatedConductorPartialInductanceswith Retardation, 123 Problems, 125 References, 131 (cid:2) (cid:2) 6 BuildingPEECModels 133 6.1 ResistiveCircuitElementsforManhattan-TypeGeometries, 134 6.2 Inductance–Resistance(Lp,R)PEECModels, 136 6.2.1 Inductance–Resistance(L,R)PEECModelforBarConductor, 137 6.3 General(Lp,Pp,R)PEECModelDevelopment, 138 6.3.1 ContinuityEquationandKCL, 139 6.3.2 RelaxationTimeforChargetoSurface, 140 6.3.3 PhysicalAspectoftheCapacitanceModel, 141 6.3.4 EquivalentCircuitsforPEECCapacitances, 143 6.3.5 (Pp,R)PEECResistiveCapacitiveInductor-LessModels, 146 6.3.6 Delayed(Lp,Pp,R,τ)PEECModels, 146 6.3.7 SimpleFull-Wave(Lp,Pp,R,τ)PEECModelsImplementation, 147 6.4 CompletePEECModelwithInputandOutputConnections, 148 6.4.1 Full-WaveModels, 149 6.4.2 QuasistaticPEECModels, 149 6.4.3 InputandOutputSelectors, 150 6.4.4 Power/EnergyTypeCircuitModel, 151 6.4.5 Resistances,Inductance,andCapacitiveTerms, 153 6.5 TimeDomainRepresentation, 154 Problems, 154 References, 155 7 NonorthogonalPEECModels 157 (cid:2) 7.1 RepresentationofNonorthogonalShapes, 158 (cid:2) 7.1.1 HexahedralBodies, 160 7.1.2 DerivativesoftheLocalCoordinates, 162 7.2 SpecificationofNonorthogonalPartialElements, 163 7.2.1 DiscretizationofConductorandDielectricGeometries, 164 7.2.2 ContinuityEquationandKCLforNonorthogonalGeometries, 168 7.3 EvaluationofPartialElementsforNonorthogonalPEECCircuits, 169 7.3.1 AnalyticSolutionforQuadrilateralCellsinaPlane, 172 7.3.2 GeneralCaseforEvaluationofIntegralI , 174 p 7.3.3 EvaluationofIntegralI WhenTwoSideslCoincide, 178 p Problems, 181 References, 182 8 GeometricalDescriptionandMeshing 185 8.1 GeneralAspectsofPEECModelMeshingRequirements, 186 8.2 OutlineofSomeMeshingTechniquesAvailableToday, 187 8.2.1 MeshingExampleforRectangularBlock, 188 8.2.2 MultiblockMeshingMethods, 189 8.2.3 MeshingofNonorthogonalSubproblems, 190 8.2.4 AdjustmentofBlockBoundaryNodes, 190 8.2.5 ContactsBetweentheEMandCircuitParts, 191 8.2.6 NonorthogonalCoordinateSystemforGeometries, 192 8.3 SPICETypeGeometryDescription, 194 8.3.1 ShortingofAdjoiningBodies, 196 (cid:2) (cid:2) 8.4 DetailedPropertiesofMeshingAlgorithms, 196 8.4.1 NonuniformMeshingAlgorithmforEfficientPEECModels, 197 8.4.2 𝛼CellProjectionAlgorithm, 199 8.4.3 SmoothingandTolerancing, 200 8.4.4 NodeRelaxation, 200 8.5 AutomaticGenerationofGeometricalObjects, 202 8.5.1 AutomaticMeshingTechniquesforThinandOtherObjects, 202 8.5.2 LoopingAlgorithmExample, 203 8.6 MeshingofSomeThreeDimensionalPre-determinedShapes, 205 8.6.1 GenerationTechniquesandMeshingofSpecialShapesLike Circles, 205 8.6.2 BodiesGeneratedbyUsingGeneratrices, 206 8.7 ApproximationswithSimplifiedMeshes, 207 8.8 MeshGenerationCodes, 208 Problems, 209 References, 210 9 SkinEffectModeling 213 9.1 TransmissionLineBasedModels, 214 9.1.1 AnomalousSkin-EffectLossandSurfaceRoughness, 214 9.1.2 CurrentFlowDirectionandCoordinateDependence, 215 9.2 OneDimensionalCurrentFlowTechniques, 215 9.2.1 Analytical1DCurrentFlowModels, 215 (cid:2) 9.2.2 NarrowBandHigh-FrequencySkin-EffectModels, 216 (cid:2) 9.2.3 ApproximateGSIThinConductorSkin-EffectModel, 217 9.2.4 Physics-BasedMacromodel, 220 9.2.5 FrequencyDomainSolverforPhysics-BasedMacromodel, 222 9.2.6 ApproximateThinWireSkin-EffectLossModel, 223 9.3 3DVolumeFilament(VFI)Skin-EffectModel, 227 9.3.1 Approximate3DVFIModelwith1DCurrentFlow, 228 9.3.2 ShortsattheIntersections, 228 9.3.3 ProximityEffect, 229 9.3.4 CircuitEquationsforProximityEffectStudy, 230 9.3.5 Full3DCurrentFlowSkin-EffectModels, 234 9.3.6 EquivalentCircuitfor3DVFIModel, 234 9.3.7 SurfaceEquivalenceTheorem-BasedSkin-EffectModel, 236 9.4 ComparisonsofDifferentSkin-EffectModels, 238 9.4.1 ThinConductorResults, 240 9.4.2 ThickConductorResults, 240 9.4.3 ComparisonofExampleResults, 241 Problems, 244 References, 246 10 PEECModelsforDielectrics 249 10.1 ElectricalModelsforDielectricMaterials, 249 10.1.1 FrequencyandTimeDomainModelsforDielectricMaterials, 249 10.1.2 ModelsforLossyDielectricMaterials, 250 (cid:2) (cid:2) 10.1.3 PermittivityPropertiesofDielectrics, 251 10.1.4 ElectricalPermittivityModelforTimeDomain, 251 10.1.5 CausalModelsforDispersiveandLossyDielectrics, 252 10.2 CircuitOrientedModelsforDispersiveDielectrics, 254 10.2.1 SimpleDebyeMediumCircuitModelforDielectricBlock, 254 10.2.2 SimpleCapacitanceModelforLorentzMedia, 256 10.3 Multi-PoleDebyeModel, 257 10.3.1 CombinedDebyeandLorentzDielectricModel, 259 10.4 IncludingDielectricModelsinPEECSolutions, 260 10.4.1 ModelsforUniform,LosslessDielectrics, 260 10.4.2 Green’sFunctionsforDielectricLayersBasedontheImage Theory, 261 10.4.3 Green’sFunctionforOneDielectricInterface, 263 10.4.4 ThreeDielectricLayersGreen’sFunctions, 266 10.4.5 DielectricModelBasedontheVolumeEquivalenceTheorem, 270 10.4.6 DiscretizationofDielectrics, 272 10.4.7 DispersiveDielectricsIncludedintheVolumeEquivalenceTheorem Model, 274 10.4.8 DispersiveDielectricswithFiniteElectricalConductivity, 274 10.4.9 ConvolutionFormulationforGeneralDispersiveMedia, 275 10.5 ExampleforImpactofDielectricPropertiesintheTimeDomain, 276 10.5.1 On-ChipTypeInterconnect, 276 10.5.2 MicrostripLinewithDispersive,Lossydielectric, 277 10.5.3 CoplanarMicrostripLineExample, 280 (cid:2) Problems, 281 (cid:2) References, 281 11 PEECModelsforMagneticMaterial 285 11.1 InclusionofProblemswithMagneticMaterials, 285 11.1.1 MagneticCircuitsforClosedFluxTypeClassofProblems, 285 11.1.2 ExampleforInductanceComputation, 287 11.1.3 MagneticReluctanceResistanceComputation, 289 11.1.4 InductanceComputationforMultipleMagneticPaths, 289 11.1.5 EquivalentCircuitforTransformer-TypeElement, 291 11.2 ModelforMagneticBodiesbyUsingaMagneticScalarPotentialand MagneticChargeFormulation, 292 11.2.1 MagneticScalarPotential, 292 11.2.2 ArtificialMagneticCharge, 292 11.2.3 MagneticChargeIntegralEquationforSurfacePoleDensity, 293 11.2.4 MagneticVectorPotential, 294 11.3 PEECFormulationIncludingMagneticBodies, 295 11.3.1 ModelforMagneticBody, 295 11.3.2 ComputationofInductiveMagneticCoupling, 297 11.3.3 RelationBetweenMagneticField,Current,andMagnetization, 298 11.4 SurfaceModelsforMagneticandDielectricMaterialSolutionsinPEEC, 300 11.4.1 PEECVersionofMagneticFieldIntegralEquation(MFIE), 301 11.4.2 CombinedIntegralEquationforMagneticandDielectricBodies, 302 Problems, 307 References, 308 (cid:2) (cid:2) 12 IncidentandRadiatedFieldModels 309 12.1 ExternalIncidentFieldAppliedtoPEECModel, 310 12.2 Far-FieldRadiationModelsbyUsingSensors, 312 12.2.1 RadiatedElectricFieldCalculationsUsingSensors, 313 12.2.2 Evaluationofz-DirectionInductiveCouplingTermfortheE-Field Sensor, 314 12.2.3 PotentialCoefficientCouplingContribution, 315 12.2.4 SummaryofE-FieldCalculationwitheSensor, 316 12.2.5 MagneticFieldCalculationUsingSensors, 316 12.2.6 TimeDomainSolutionforH-FieldSensor, 317 12.2.7 FrequencyDomainSolutionforH-FieldSensor, 318 12.3 DirectFar-FieldRadiationComputation, 318 12.3.1 GeneralRadiatedField, 319 12.3.2 RadiatedFieldComputationBasedonthePEECComputation Results, 320 12.3.3 ApproximateComputationofFarFields, 320 Problems, 322 References, 322 13 StabilityandPassivityofPEECModels 325 13.1 FundamentalStabilityandPassivityConcepts, 327 13.1.1 TimeDomainStability, 328 13.1.2 TimeDomainPassivity, 328 (cid:2) (cid:2) 13.1.3 Causality, 329 13.1.4 PositiveRealFunctionandPassivity, 331 13.1.5 ExampleCircuitforNon-orLimitedPassivity, 331 13.2 AnalysisofPropertiesofPEECCircuits, 332 13.2.1 PortsandNodalPotentials(Voltages), 332 13.2.2 PassivityforQuasistaticPEECPortImpedance, 333 13.3 ObservabilityandControllabilityofPEECCircuits, 334 13.3.1 GeneralProperties, 335 13.3.2 PassivityatPortsforPEECCircuitintheFrequencyDomain, 335 13.3.3 TimeDomainStabilityandPassivityIssues, 336 13.4 PassivityAssessmentofSolution, 337 13.4.1 Port-BasedPassivityAssessmentinFrequencyDomain, 337 13.4.2 Port-BasedPassivityAssessmentinTimeDomain, 340 13.5 SolverBasedStabilityandPassivityEnhancementTechniques, 342 13.5.1 SolverEnhancementTechniquesforTimeandFrequency Domains, 343 13.5.2 PassivityEnhancementbySubdivisionofPartialElements, 344 13.5.3 PassivityEnhancementUsingResistiveDamping, 346 13.5.4 PartialElementsDelayMacromodelsforPassivityEnhancement, 348 13.5.5 PassivityEnhancementforModelwithVFISkin-EffectModels, 353 13.5.6 Physics-BasedSkin-EffectMacromodelforPartialElements, 353 13.5.7 MutualCouplingInductanceTermswithRetardation, 355 13.6 TimeDomainSolverIssuesforStabilityandPassivity, 359 13.6.1 ImpactofTimeIntegrationonStability, 359 13.6.2 ImpactofNumericalDampingofIntegrationMethod, 361 (cid:2) (cid:2) 13.6.3 DigitalWaveformFiltering, 362 Acknowledgment, 364 Problems, 364 References, 365 A TableofUnits 369 A.1 CollectionofVariablesandConstantsforDifferentApplications, 369 B ModifiedNodalAnalysisStamps 373 B.1 ModifiedNodalAnalysisMatrixStamps, 373 B.1.1 Resistor, 373 B.1.2 Capacitor, 375 B.1.3 IndependentVoltageSource, 376 B.1.4 IndependentVoltageSourcewithSeriesElements, 376 B.1.5 IndependentCurrentSource, 377 B.1.6 ShortCircuitConnection, 377 B.1.7 CoupledInductances, 378 B.1.8 IdealTransformerModel, 379 B.2 ControlledSourceStamps, 380 B.2.1 CurrentControlledVoltageSource(CCVS), 380 B.2.2 VoltageControlledVoltageSource(VCVS), 380 B.2.3 CurrentControlledCurrentSource(CCCS), 380 (cid:2) B.2.4 VoltageControlledCurrentSource(VCCS), 382 (cid:2) References, 382 C ComputationofPartialInductances 383 C.1 PartialInductanceFormulasforOrthogonalGeometries, 385 C.1.1 Lp forTwoParallelFilaments, 385 12 C.1.2 Lp forRoundWire, 386 11 C.1.3 Lp forFilamentandCurrentSheet, 388 12 C.1.4 Lp forRectangularZeroThicknessCurrentSheet, 389 11 C.1.5 Lp forTwoParallelZeroThicknessCurrentSheets, 389 12 C.1.6 Lp forTwoOrthogonalRectangularCurrentSheets, 390 12 C.1.7 Lp forRectangularFiniteThicknessBar, 392 11 C.1.8 Lp forTwoRectangularParallelBars, 394 12 C.1.9 1/R3KernelIntegralforParallelRectangularSheets, 395 C.1.10 1/R3KernelIntegralforOrthogonalRectangularSheets, 397 C.2 PartialInductanceFormulasforNonorthogonalGeometries, 398 C.2.1 RotationforDifferentNonorthogonalConductorOrientations, 398 C.2.2 LpforArbitraryOrientedWiresintheSamePlanez=0, 399 C.2.3 LpforWireFilamentswithanArbitraryDirection, 401 C.2.4 LpforTwoCellsorBarswithSameCurrentDirection, 403 C.2.5 LpforArbitraryHexahedralPartialSelf-Inductance, 403 C.2.6 LpforArbitraryHexahedralPartialMutualInductance, 404 References, 407 (cid:2)

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.