CIRCUIT DESIGN FORRFTRANSCEIVERS This page intentionally left blank CIRCUIT DESIGN FOR RF TRANSCEIVERS By Domine Leenaerts Philips Research Laboratories Eindhoven Johan van der Tang Eindhoven University of Technology and Cicero S. Vaucher Philips Research Laboratories Eindhoven KLUWER ACADEMIC PUBLISHERS NEW YORK,BOSTON, DORDRECHT, LONDON, MOSCOW eBookISBN: 0-306-47978-8 Print ISBN: 0-7923-7551-3 ©2003 Kluwer Academic Publishers NewYork, Boston, Dordrecht, London, Moscow Print ©2001 Kluwer Academic Publishers Dordrecht All rights reserved No part of this eBook maybe reproducedor transmitted inanyform or byanymeans,electronic, mechanical, recording, or otherwise, without written consent from the Publisher Created in the United States of America Visit Kluwer Online at: http://kluweronline.com and Kluwer's eBookstore at: http://ebooks.kluweronline.com To Lisanne, Nienke, and Viviane This page intentionally left blank Contents Preface xiii 1. RF DESIGN: CONCEPTS AND TECHNOLOGY 1 1.1 RF Specifications 1 1.1.1 Gain 2 1.1.2 Noise 6 1.1.3 Non-linearity 10 1.1.4 Sensitivity 14 1.2 RF Device Technology 14 1.2.1Characterization and Modeling 15 Modeling 15 Cut-off Frequency 17 Maximum Oscillation Frequency 20 Input Limited Frequency 21 Output Limited Frequency 22 Maximum Available Bandwidth 23 1.2.2 Technology Choice 23 Double Poly Devices 24 Silicon-on-Anything 26 Comparison 28 SiGe Bipolar Technology 30 RF CMOS 30 1.3 Passives 33 1.3.1 Resistors 34 1.3.2 Capacitors 35 1.3.3 Planar Monolithic Inductors 37 References 42 2. ANTENNAS, INTERFACE AND SUBSTRATE 43 2.1 Antennas 43 2.2 Bond Wires 46 2.3 Transmission Lines 49 2.3.1 General Theory 49 2.3.2 Impedance Matching using Transmission Lines 51 2.3.3 Microstrip Lines and Coplanar Lines 54 2.4 Bond Pads and ESD Devices 58 vii viii CIRCUIT DESIGN FOR RF TRANSCEIVERS 2.4.1 Bond Pads 59 2.4.2 ESD Devices 60 ggNMOST ESD Device 61 pn and np-Diode ESD Device 64 2.5 Substrate 67 2.5.1 Substrate Bounces 69 2.5.2 Design Techniques to Reduce the Substrate Bounces 71 References 77 3. LOW NOISE AMPLIFIERS 79 3.1 Specification 79 3.2 Bipolar LNA design for DCS Application in SOA 84 3.2.1 Design of the LNA 84 3.2.2 Measurements 93 3.3 CMOS LNA Design 94 3.3.1 Single Transistor LNA 94 Design Steps 95 Simulation and Measurement 101 3.3.2 Classical LNA Design 104 The Design 105 Measurement Results 108 3.4 Evaluation 108 References 111 4. MIXERS 113 4.1 Specification 113 4.2 Bipolar Mixer Design 118 4.3 CMOS Mixers 121 4.3.1 Active CMOS Mixers 122 4.3.2 Passive CMOS Mixers 127 1/f-Noise in Mixer Transistors 128 1/f-Noise due to IF Amplifier 133 1/f-Noise due to Switched-Capacitor Behavior 138 4.3.3 Concluding Remarks 141 References 142 5. RF POWER AMPLIFIERS 145 5.1 Specification 145 5.1.1 Efficiency 145 5.1.2 Generic Amplifier Classes 146 5.1.3 Heating 149 Contents ix 5.1.4 Linearity 150 5.1.5 Ruggedness 151 5.2 Bipolar PA Design 151 5.3 CMOS PA Design 160 5.4 Linearization Principles 166 5.4.1 Predistortion Technique 168 5.4.2 Phase-Correcting Feedback 172 5.4.3 Envelope Elimination and Restoration (EER) 177 5.4.4 Cartesian Feedback 180 References 182 6. OSCILLATORS 185 6.1 Introduction 185 6.1.1 The Ideal Oscillator 185 6.1.2 The Non-ideal Oscillator 186 6.1.3 Application and Classification 188 6.1.4 Oscillation Conditions 191 6.1.5 Amplitude Stabilization 196 6.2 Specifications 199 6.2.1 Frequency and Tuning 199 6.2.2 Tuning Constant and Linearity 200 6.2.3 Power Dissipation 200 6.2.4 Phase Noise to Carrier Ratio 201 Reciprocal Mixing 202 Signal to Noise Degradation of FM Signals 203 Spurious Emission 203 6.2.5 Harmonics 204 6.2.6 I/Q Matching 204 6.2.7 Technology and Chip Area 205 6.3 LC Oscillators 206 6.3.1 Frequency, Tuning and Phase Noise 206 Frequency 207 Tuning 208 Phase Noise to Carrier Ratio 209 6.3.2 Topologies 221 6.4 RC Oscillators 223 6.4.1 Frequency, Tuning and Phase Noise 223 Frequency 224 Tuning 225 Phase Noise to Carrier Ratio 228 6.4.2 Topologies 229
Description: