ebook img

Chromospheric features of LQ Hydrae from H-alpha line profiles PDF

0.24 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Chromospheric features of LQ Hydrae from H-alpha line profiles

Astronomy&Astrophysicsmanuscriptno.9058 (cid:13)c ESO2008 February5,2008 α Chromospheric features of LQ Hydrae from H line profiles 8 A.Frasca1,Zs.Ko˝va´ri2,K.G.Strassmeier3,andK.Biazzo1 0 0 2 1 INAF–CataniaAstrophysicalObservatory,viaS.Sofia78,I-95123,Catania,Italy n e-mail:[email protected], [email protected] a 2 KonkolyObservatory,H-1525Budapest,P.O.Box67,Hungary J e-mail:[email protected] 5 3 AstrophysicalInstitutePotsdam,AnderSternwarte16,D-14482Potsdam,Germany 2 e-mail:[email protected] ] h Received14Nov2007/Accepted3Jan2008 p - ABSTRACT o r t WeanalyzetheHαspectralvariabilityoftherapidly-rotatingK1-dwarfLQHyausinghigh-resolutionHαspectrarecordedduringApril-May s 2000.ChromosphericparameterswerecomputedfromtheHαprofileasafunctionofrotationalphase.Wefindthatalltheseparametersvary a [ inphase,withahigherchromosphericelectrondensitycoincidingwiththemaximumHαemission.Wefindaclearrotationalmodulationof theHαemissionthatisbetteremphasizedbysubtractingareferencephotospheric templatebuiltupwithaspectrumofanon-activestarof 1 thesamespectraltype.AgeometricalplagemodelappliedtotheHαvariationcurveallowsustoderivethelocationoftheactiveregionsthat v comeouttobecloseinlongitudetothemostpronouncedphotosphericspotsfoundwithDopplerimagingappliedtothephotosphericlinesin 8 thesamespectra.OuranalysissuggeststhattheHαfeaturesobservedinLQHyain2000areascaled-upversionofthesolarplagesasregards 9 dimensionsand/orfluxcontrast.Noclearindicationofchromosphericmassmotionsemerges. 8 3 . Keywords.stars:activity–stars:late-type–stars:chromospheres–stars:starspots–stars:individual:LQHydrae 1 0 8 0 1. Introduction investigated by Strassmeieretal. (1993, hereafter Paper II), : who attributed it to the presence of chromospheric velocity v According to the solar-stellar analogy, chromospheric stellar i fields in the Hα forming layer probably surrounding photo- X activity can be established by the presence of emission in the sphericspots. coreoftheBalmerHαline.AsintheSun,Hαemissioninten- r a sification hasoftenbeenobservedin surfacefeatures(plages) InourspectroscopicstudyinPaperI,wepresentedDoppler spatially connected with the photospheric starspots (see, e.g., images using the Fe-6411, Fe-6430, and Ca-6439 lines Catalanoetal. 2000; Biazzoetal. 2006, 2007, and references for both the late April data and the early May 2000 dataset. therein).Thus,the timevariabilityofthe Hαspectralfeatures Dopplerimagingwas supportedby simultaneousphotometric can be used to estimate the basic properties of the emitting measurementsin Johnson-CousinsVI bands. Doppler images sources,allowingthe geometryofthestellarchromosphereto showed spot activity uniformly at latitudes between −20◦and bemapped. +50◦, sometimes with high-latitude appendages, but without In this paper we analyze the Hα spectral variability of a polar spot. Comparingthe respectivemaps from two weeks the young, rapidly-rotating (P ≈ 1.6d) single K2-dwarf rot apart,rapidspotevolutionwasdetected,whichwasattributed LQHydrae (HD82558 = Gl355) using 15 high-resolution tostrongcross-talksbetweentheneighboringsurfacefeatures spectrarecordedduringApril-May2000.AllHαspectrawere throughmagneticreconnections.InTable1wegiveasummary acquired simultaneously with the mapping lines used for the ofthestellarparametersastheyemergedfromPaperI. year-2000Dopplerimagingstudypresentedinourpreviouspa- per (Ko˝va´rietal. 2004, hereafter Paper I). LQHya was first recognized as a chromospherically active star through Ca TheobservationsareagainbrieflypresentedinSect.2and H&Kemission(Bidelman1981;Heintz1981).TheHαabsorp- the method used for the Hα spectral study is described in tionfilled in bychromosphericemissionwas reportedfirst by Sect.3.TheresultsarepresentedinSect.4.SincetheHαob- Fekeletal. (1986), and LQHya was classified as a BYDra- servationsofthispaperwereincludedinthespectroscopicdata type spotted star. Variable Hα emission-peak asymmetry was used in Paper I to reconstruct the year-2000Doppler images, inSect.5wetaketheopportunitytocomparethephotospheric Sendoffprintrequeststo:A.Frasca featureswiththecontemporaneousHα-emittingregions. 2 A.Frascaetal.:ChromosphericfeaturesofLQHydraefromHαlineprofiles Table 1. Astrophysical data for LQHya (adopted from Table2.Observinglogandradialvelocities Ko˝va´rietal.2004) Parameter Value HJD Phase vr σvr (kms−1) (kms−1) Classification K2V 2451639.681 0.187 7.1 0.6 Distance(Hipparcos) 18.35±0.35pc 2451640.647 0.791 7.8 0.6 (B−V) 0.933±0.021mag Hipparcos 2451641.648 1.416 8.6 0.5 (V−I) 1.04±0.02mag Hipparcos 2451642.662 2.050 7.4 0.6 Luminosity,L 0.270±0.009L⊙ 2451643.744 2.726 7.6a 2.4 logg 4.0±0.5 2451644.677 3.309 8.3 0.6 T 5070±100K eff 2451660.683 13.308 8.8 0.5 vsini 28.0±1.0km/s 2451661.668 13.924 8.7 0.6 Inclination,i 65◦±10◦ 2451662.652 14.538 9.5 0.6 Period,P 1.60066±0.00013days rot 2451663.654 15.165 7.5 0.5 Radius,R 0.97±0.07R ⊙ 2451664.667 15.798 9.0 0.6 Mass ≈0.8M ⊙ 2451665.653 16.413 9.8 0.5 Age ≈ZAMS 2451666.661 17.043 8.0 0.5 2451667.665 17.670 7.4 0.6 2451668.670 18.298 8.1 0.7 2. Spectroscopicobservations The series of 15 Hα spectra was collected, one spectrum awith16VirasRVstandard per night, during two observing runs (April 4–9, 2000, and April25–May3,2000)attheKittPeakNationalObservatory (KPNO)withthe0.9mcoude´-feedtelescope.The3096×1024 emission, which can be integrated to estimate the total radia- tivechromosphericlossintheline. F3KB CCD detector was employed, together with grating A, camera 5, and the long collimator. The spectra were centered We point out that one can obtain the true chromospheric at6500Åwithawavelengthrangeof300Å.Theeffectiveres- Hαemissionwiththismethodonlyifthechromosphereisalso olutionwas≈28000(11 kms−1).Weachievedsignal-to-noise opticallythin inside the activeregionsorif the plagesare not ratios(S/N)ofabout250in 45-minintegrationtime,with the extended enough to appreciably affect the photospheric spec- onlyexceptionbeingthespectrumat2.726phaseforwhichan trum. In the opposite case, the subtraction of the underlying S/Nofjust50couldbereachedduetobadskyconditions. photosphericprofilewouldoverestimatetheHαchromospheric ThemeanHJDsoftheobservations,thephases,aswellas emission. theradialvelocities,aresummarizedinTable2.Forphasingthe For this reason we have also measured the Hα equivalent spectra,HJD=2448270.0+1.600656×Ewasused,wherethe width in the observed spectra (EWHα), fixing a constant in- arbitrarilychosenzeropointisthesameasusedforourformer tegration window of 5.0Å, i.e. integrating the emission core Dopplerimagingstudies(Strassmeieretal.1993;Ko˝va´rietal. inside the absorption wings (see Fig. 1). The net Hα equiva- 2004). As radial velocity (RV) standard star, βGem (vr = lentwidth,∆EWHα,wasinsteadmeasuredintheresidualspec- 3.23kms−1)wasmeasured,exceptforHJD2451643.744when tra obtained from the originalones with the “spectral synthe- 16Vir (v = 36.48kms−1) was observed (Scarfeetal. 1990). sis” method. The non-active template was built using a high- r FormoredetailswerefertoPaperI. resolution(R=42000)spectrumoftheK2VstarHD3765re- trievedfromtheELODIEarchive.WechoseHD3765because itsspectraltypeandcolorindexB−V =0.942(Weis1996)are 3. Dataanalysis nearlyidenticalwiththoseofLQHya,becauseitsrotationve- TheBalmerHαlineisausefulandeasilyaccessibleindicator locityisverylow(vsini=2.5kms−1,Strassmeieretal.2000), of chromosphericactivity in the opticalspectrum. Ithas been and because it has a low level of magnetic activity compared proventobeveryeffectivefordetectingchromosphericplages to LQHya. The spectrum was first degradedto the resolution both in the Sun and in active stars, due to its high contrast of the KPNO spectraby convolvingitwith a Gaussiankernel against the surrounding chromosphere (see, e.g., Frascaetal. and subsequently broadened by convolution with a rotational 1998;Biazzoetal.2006,2007). profilecorrespondingtothevsiniof28kms−1ofLQHya. However, the Hα line is formed in a wide depth range in The error of the equivalentwidth, σEW, was evaluated by thestellaratmosphere,rangingfromthetemperatureminimum multiplying the integration range by the photometricerror on totheupperchromosphere.Toextractthechromosphericcon- eachpoint.Thiswasestimatedbythestandarddeviationofthe tributionfromthelinecore,weapplyamethodusuallycalled observed flux values on the difference spectra in two spectral “spectralsynthesis”, which consists in the subtractionof syn- regions near the Hα line. The values of EWHα, ∆EWHα, and thetic spectra or of observed spectra of non-active standard σEW arereportedinTable3. stars(referencespectra)(see,e.g.,Herbig1985;Barden1985; We also measuredthecentralwavelengthoftheHαemis- Frasca&Catalano 1994; Montesetal. 1995). The difference sionbothintheraw(observed)andresidualspectrabyevaluat- between observed and reference spectra provides the net Hα ingthecentroidofthecoreemission.Thisquantityprovidedus A.Frascaetal.:ChromosphericfeaturesofLQHydraefromHαlineprofiles 3 We estimated the chromospheric electron density in LQHyaadoptingtheassumptionsfromPaperII,i.e.anisother- malchromospherewithT = 10000Kforwhichtheopti- chrom caldepthintheHαcentercanbederivedbytheformulationof Cram&Mullan(1979): ∆λ 2 peak lnτ = , (1) chrom 2∆λ ! D where ∆λ is the wavelength separation of the blue and peak red emission peaks, and ∆λ = 0.28Å is the chromospheric D Doppler width. We measured ∆λ on the observed spectra peak by fitting two Lorentzian functions to all the double-peaked Hαprofiles.Obviously,thisanalysiscouldnotbeappliedtothe single-peakedspectraclosetotheminimumemissionatphase 0.2–0.5. Combining equations 8 and 14 in Cram&Mullan (1979),theelectrondensityn incm−3canbeevaluatedas e F B(T ) n =1.67·1014 max eff τ−1 , (2) e F B(T ) chrom cont chrom where Fmax is the ratio of the Hα peak to the continuumflux, Fcont asmeasuredonourspectra,andBisthePlanckfunctioncalcu- lated for the effectivetemperatureof LQHya (T = 5100K) eff and at T = 10000K. The optical depth at the Hα cen- chrom ter changesfrom about 30 to 4 and the electron density from 5·1011to4·1012cm−3fromphase≈0.2(neartheminimumHα emission)tothephasesofmaximumemission(φ=0.6−0.8,see Fig.2).Inthesamefigure,thefluxratiobetweentheredandthe blue peaks FR and the peak separation∆λ are plotted ver- FV peak sustherotationalphase.Allthesequantitiesappearmodulated Fig.1. Time series of Hα profiles for LQ Hya in April-May bythestellarrotation.Symmetricprofiles(FR ≃ 1)tendtobe FV 2000 sorted in phase order. The non-active template built up observedwhenthemostactiveregions,judgingfromthepho- with a spectrum of the non-active, slowly-rotating K2V star tosphericspotcontrast,areinthevisiblehemisphere,similarto HD3765 is shown by a dash-dotted line at the bottom. The whatwasfoundbyStrassmeieretal.inPaperII. vertical dotted lines mark the integration interval for the raw TheHαequivalentwidthmeasuredintheobserved(EWHα) Hαequivalentwidth(EWHα). andintheresidualspectra(∆EWHα),theradialvelocityshifts of the Hα emission (∆V and ∆Vres), and the contempora- em em neous light curve in the V band (from Paper I) are plotted in Fig.3asfunctionsoftherotationalphase.Aremarkableanti- withtheradialvelocityshiftsbetweentheHαemissionandthe correlationofV brightnessandHαemissionisapparent. photospheremeasuredbothintheraw(∆V )andintheresid- em ualspectra(∆Vres).Thevaluesof∆V and∆Vres arereported ThehighestelectrondensityisobservedwhentheHαline em em em isstrongest,indicatingadenserchromosphereabovemoreex- inTable3aswell. tended active regions, the opposite of what was observed in 1991(PaperII).We also foundanaveragevalueforthe chro- 4. Results mospheric electron density that was higher than the one re- portedinPaperII(2·1011cm−3).Moreover,therotationalmod- IntheLQHyaspectra,theHαlineisastronglyvariablefeature ulationofallthequantitiesdeducedbytheHαlineanalysisis displayingabsorptionwingsandacorechangingfromacom- much more evidentin the presentdata. Presumably, in April- pletely filled-in configuration to a moderate emission above May 2000, LQHya was more active than in 1991, and it dis- the continuum (see Fig. 1). A faint single peak just filling in playedmoreandlargeractiveregions. the line core, without reaching the continuum, is observed at the phases of minimum Hα emission (φ=0.2−0.4), whereas 5. Discussionandconclusions double-peakedemissionprofilesareobservedwithacentralre- versal at the other phases. The “blue” emission peak is often To obtain information about the surface location of the ac- stronger than the “red” one, although at some phases, nearly tive regions in the chromosphere of LQ Hya, we applied a equal peak heights and even reversed intensity ratios are also simple geometric plage model to the rotationally modulated observed.The Hα profilesare shown in Fig. 1 along with the chromosphericemission.Thismethodhadbeendescribedand photospherictemplatebuiltupwithanHD3765spectrum(see successfully applied to the Hα modulation curves of sev- Sect.3). eral other active stars (e.g., Frascaetal. 2000; Biazzoetal. 4 A.Frascaetal.:ChromosphericfeaturesofLQHydraefromHαlineprofiles Fig.2. From top to bottom.The computedelectrondensity n Fig.3.Toppanel:V lightcurvecontemporaneoustothespec- e (cm−3),thefluxratiobetweentheredandthebluepeaks,and tra.Middlepanels:RotationalmodulationoftherawHαequiv- thepeakseparationinÅagainsttherotationalphase. alent width (EW , open circles) and of the residual Hα EW Hα (∆EW , filled circles). Bottom panel:Velocity shift between Hα Hα emission and photospheric lines both for observed (open 2006; Frascaetal. 2007). On LQ Hya, two circular bright circles) and residual spectra (filled circles). The continuous spots (plages) are normally sufficient for reproducingthe ob- linesin themiddle andbottompanelsrepresentthe bestfit of servedvariationswithinthedataerrors(cf.Frascaetal.2000; our3-plagemodel(cf.Fig.4),whilethedottedlinesrepresent Ko˝va´ri&Bartus 2001). In our model the flux ratio between theresultofour2-plagemodel. plages and the surrounding chromosphere (F /F ) is plage chrom a free parameter. Solar values of F /F ≈ 2, as de- plage chrom duced from averaging many plages in Hα (e.g., Ellison stronglydependentontheassumedfluxcontrastF /F . plage chrom 1952;LaBonte1986;Ayresetal. 1986),are toolowto model Thus, only the combined information between plage dimen- the high amplitudes of Hα ∆EW curves in very active stars sions and flux contrast, i.e. some kind of plage “luminosity” (Biazzoetal.2006;Frascaetal.2007).Infact,extremelylarge in units of the quiet chromosphere (L /L ), can be de- plage quiet plages, covering a significant fraction of the stellar surface, duced as a meaningful parameter. Note also that we cannot would be required with such a low flux ratio, and they could estimate the true quietchromosphericcontribution(network), not reproduce the observed modulation.In order to achieve a since the Hα minimum value, ∆EW = 0.84Å, could still quiet goodfit,afluxratioof5,whichisalsotypicalofthebrightest be affected by a homogeneousdistribution of smaller plages. parts of solar plages or of flare regions (e.g., Sˇvestka 1976; However,such anapproximationseemsvalid forLQ Hya be- Zirin1988),wasadopted. cause our aim was only to comparethe spatial distribution of The solutions essentially provide the longitude of the themainsurfaceinhomogeneitiesatchromosphericandphoto- plagesandgiveonlyroughestimatesoftheirlatitudeandsize. sphericlevels. The information about the latitude of surface features can be We also searched for solutions with three active regions, recoveredfromtheanalysisofspectral-lineprofilesbroadened finding a small but possibly significant increase in the good- bythestellarrotation,aswedidforthespotsofLQHyawith ness of the fit, with the χ2 passing from 5.77 to 4.45 (see DopplerimaginginPaperI.Asimilartechniquecannotreach Fig. 3). The model with only two plages requires features at the same level of accuracy when applied to the Hα profile rather high latitudes (Table 4) to explain the nearly flat and whosebroadeningis dominatedbychromosphericheatingef- long-lasting maximum,while a 3-plage modelallows placing fects,whichareparticularlyefficientintheactiveregions(e.g., plagesatlowerlatitudes,inbetteragreementwiththespotlo- Lanzafameetal.2000). cationsfromDopplerimaging.However,thelongitudesofthe We searched for the best solution by varying the longi- two largestplagesdo notchangeverymuch(less than 15 de- tudes, latitudes, and radii of the active regions. The radii are grees). A.Frascaetal.:ChromosphericfeaturesofLQHydraefromHαlineprofiles 5 Table 3. Equivalentwidths of the raw (EW ) and the resid- Table4.PlageparametersforLQHyainApril-May2000. Hα ual spectra (∆EW ), errors of the equivalent widths (σ ), Hα EW andvelocityshifts∆V and∆Vresfortherawandtheresidual em em spectra,respectively. Radius Lon. Lat. Fplage Fchrom (◦) (◦) (◦) Phase EW ∆EW σ ∆V ∆Vres Hα Hα EW em em 2PlagesSolution (Å) (Å) (Å) (kms−1) (kms−1) 15.5 215 35 5 0.187 0.172 0.934 0.041 −27.46 −1.78 20.0 353 66 5 0.791 0.117 1.003 0.038 −14.05 −0.13 3PlagesSolution 1.416 0.183 0.935 0.036 −29.11 −0.96 13.0 210 20 5 2.050 0.107 1.013 0.043 7.40 −1.29 13.0 8 15 5 2.726 0.116 1.045 0.213 −17.00 −5.80 9.5 280 15 5 3.309 0.239 0.879 0.037 −32.70 −2.92 13.308 0.248 0.858 0.044 −28.68 −2.19 13.924 0.058 1.045 0.048 −10.77 1.38 14.538 0.025 1.050 0.041 −20.01 −1.38 Asymmetryinthepeaksofanemissionlinewithacentral 15.165 0.099 0.998 0.041 −0.69 −0.56 reversal has been frequentlyobserved for Ca K line both in 15.798 0.073 1.050 0.036 −1.87 1.09 the Sun (e.g., Zirin 1988; Ding&Schleicher 1998, and refer- 16.413 0.215 0.919 0.035 −29.60 −0.49 ence therein) and in cool stars (e.g., Montesetal. 2000, and 17.043 0.094 1.024 0.034 −0.18 0.65 17.670 0.038 1.074 0.051 −13.38 0.36 referencetherein).Theblueasymmetryismorefrequentlyob- 18.298 0.325 0.834 0.038 −43.07 0.29 served in the solar chromosphereand is commonlyattributed tothepropagationofacousticwaves(e.g.,Cram1976)withan upwardvelocityontheorderof10 kms−1inthelayerinwhich the K emission peaks are formed or a downward motion in 2 thelayerproducingthecentralreversalK (e.g.,Durrantetal. 3 Theresultingplagelongitudesareingoodagreementwith 1976). theDopplerresultsinPaperI;i.e.,photosphericminimaat0.6 Oranje(1983)hasshownthattheaverageCaKemission and0.9withthelargest/coolestphotosphericspotscorrespond profileinsolarplageshasacompletelydifferentshapefromthe to the most luminous chromospheric phases, and vice versa, surroundingchromosphere,withtheredpeakslightlystronger the brightest photometric phase at 0.3 overlap with the low- thantheblueone.Thiscouldreflectthedifferentphysicalcon- estchromosphericHαemission,againsupportingtheparadigm ditions and velocity fields in active regions compared to the thatphotosphericspotsarephysicallyconnectedwithchromo- quietchromosphere.Asimilaranalysiscannotbemadeforthe sphericplages(Fig.4). Sun as a star in Hα, because thisline is an absorptionfeature ThesyntheticHαEWcurveforthemodelwiththreeplages in the quietchromosphereand only a filling in is observedin isplottedinthemiddlepanelofFig.3asacontinuouslinesu- plages.However,similarchangesoftheHαlineprofilecanbe perimposed on the data (dots), while the 2-plage solution is expectedintheplagesofanystarsthataremoreactivethanthe displayed by a dotted line. Both of them reproduce the ob- Sun. Thus, the rotational modulationof FR is consistent with FV servedrotationalmodulationquitewell.Withthesamemodels thepresenceofplagesinthechromosphereofLQHya. wewereabletocalculatetheradialvelocityshiftbetweenthe These results suggest scaled-up versions (regarding size Hαsyntheticemissionprofile,resultingfromthequietchromo- and brightness) of solar-type plages for the Hα features ob- sphereplusthevisibleplages,andthephotosphere.Itisclearin servedinLQHyain2000,withoutanyclearevidenceofstrong thebottompanelofFig.3thattheamplitudeofthetheoretical massmotionsinitschromosphere. ∆V curves, both for a 2-plage and a 3-plage model, is very em low, consistent with the valuesderived from the residualpro- Acknowledgements. We are grateful to an anonymous referee for files (∆Vres) andin totaldisagreementwith the velocityshifts helpfulcommentsandsuggestions.Thisworkhasbeenpartiallysup- em ported by the Italian Ministero dell’Universita` e Ricerca (MUR), derivedfromtherawspectra.Thisstronglysupportsthespec- which is gratefully acknowledged. Zs. K. is a grantee of the Bolyai tral synthesis method we used to evaluate the chromospheric Ja´nosScholarshipoftheHungarianAcademyofSciencesandisalso emissionintheHαline. gratefultotheHungarianScienceResearchProgram(OTKA)forsup- Wewouldliketooutlinetherotationalmodulationofother portundergrantsT-048961andK68626.K.G.S.thankstheU.S.Kitt features observed in the Hα profile, such as the peak separa- PeakNationalObservatoryforthepossibilitytorecordlongtimese- tion, which is related to the chromospheric electron density riesofstellardatawiththelateCoude´-feedtelescope,nowretired. (Sect.4)andtheasymmetryofblue/redpeakintensity(Fig.2). Thechromosphereof LQHya displaysa higherelectronden- References sity above active regions. The blue emission peak is stronger than the red one (FR < 1) in the “quiet” chromosphere of Ayres, T. R., Testerman, L., & Brault, J. W. 1986, ApJ, 304, FV LQHya,whilenearlyequalpeaks(FR ≃1)tendtobeobserved 542 FV whenthemostactiveregionsareinthevisiblehemisphere. Barden,S.C.1985,ApJ,295,162 6 A.Frascaetal.:ChromosphericfeaturesofLQHydraefromHαlineprofiles Ko˝va´ri,Zs.,Bartus,J.1997,A&A323,801 Ko˝va´ri,Zs.,Strassmeier,K.G.,Granzer,T.,Weber,M.,Ola´h, K.,Rice,J.B.2004,A&A417,1047(PaperI) LaBonteB.J.1986,ApJS,62,241 Lanzafame, A. C., Busa`, I., & Rodono`, M. 2000, A&A, 362, 683 Montes, D., Ferna´ndez-Figueroa, M. J., De Castro, E., & Cornide,M.1995,A&AS,109,135 Montes, D., Ferna´ndez-Figueroa, M. J., De Castro, E., et al. 2000,A&AS,146,103 Oranje,B.J.1983,A&A124,43 Scarfe, C. D., Batten, A. H., & Fletcher, J. M. 1990, Publications of the Dominion Astrophysical Observatory Victoria,18,21 Strassmeier,K. G.,Rice, J.B., Wehlau,W. H.,Hill,G. M.,& Matthews,J.M.1993,A&A268,671(PaperII) Strassmeier,K.G.,Washuettl,A.,Granzer,Th.,Scheck,M.,& Weber,M.2000,A&AS142,275 Sˇvestka,Z.1976,SolarFlares,D.ReidelPublishingCompany, Dordrecht,7 Weis,E.W.1996,AJ,112,2300 Zirin,H.1988,AstrophysicsoftheSun(CambridgeUniversity Press),214,350 Fig.4. Schematic representation of the surface features of LQ Hya in the chromosphereas reconstructedby the 2-plage ListofObjects (top) and by the 3-plage models (middle) and in the photo- sphere (bottom). In these maps, the star is rotating counter- ‘LQHydrae’onpage1 clockwise. Dominant features are found at similar longitudes ‘HD3765’onpage2 atbothchromosphericandphotosphericlevels. Biazzo,K.,Frasca,A.,Catalano,S.,&Marilli,E.2006,A&A, 446,1129 Biazzo,K., Frasca, A.,Henry,G. W., Catalano,S., &Marilli, E.2007,ApJ,656,474 Bidelman,W.P.1981,AJ86,553 Catalano, S., Rodono`, M., Cutispoto, G., et al. 2000, in Kluwer Academic Publishers, Variable Stars as Essential AstrophysicalTools,ed.˙Ibanogˇlu,C.,687 Cram,L.E.1976,A&A,50,263 Cram,L.E.,&Mullan,D.J.1979,ApJ,234,579 Ding,M.D.,&Schleicher,H.1998,A&A,332,767 Durrant, C. J., Grossmann-Doerth, U., &, Kneer, F. J. 1976, A&A,51,95 Ellison,M.A.1952,MNRAS,112,679 Fekel,F.C.,Moffett,T.J.,Henry,G.W.1986,ApJS,60,551 Frasca,A.,&Catalano,S.1994,A&A,284,883 Frasca,A.,Catalano,S.,&Marilli,E.1998,inASPConf.Ser. 154,TheTenthCambridgeWorkshoponCoolStars,Stellar SystemsandtheSun,eds.Bookbinder,J.A.,&Donahue,R. A.(SanFrancisco:ASP),1521 Frasca,A.,FreireFerrero,R.,Marilli,E.,&Catalano,S.2000, A&A,364,179 Frasca,A.,Biazzo,K.,Tas¸,G.,Evren,S.,&Lanzafame,A.C. 2007,A&A,inpress Heintz,W.D.1981,ApJS46,247 Herbig,G.H.1985,ApJ,289,269

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.