ebook img

Chiral phase transition in a random matrix model with three flavors PDF

0.32 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Chiral phase transition in a random matrix model with three flavors

Chiral phase transition in a random matrix model 0 with three flavors 1 0 2 n a J 0 HirotsuguFujii 2 InstituteofPhysics,UniversityofTokyo,Tokyo153-8902,Japan ] t a MunehisaOhtani l - p PhysicsDepartment,SchoolofMedicine,KyorinUniversity,Tokyo181-8611,Japan e h TakashiSano ∗ [ DepartmentofPhysics,UniversityofTokyo,Tokyo113-0033,Japan 1 InstituteofPhysics,UniversityofTokyo,Tokyo153-8902,Japan v E-mail:[email protected] 0 4 6 The chiralphase transition in the conventionalrandommatrix modelis the second order in the 3 . chirallimit,irrespectiveofthenumberofflavorsNf,becauseitlackstheUA(1)-breakingdeter- 1 0 minantinteractionterm. Furthermore,itpredictsanunphysicalvalueofzeroforthetopological 0 susceptibility at finite temperatures. We propose a new chiral random matrix model which re- 1 : solvesthesedifficultiesbyincorporatingthedeterminantinteractiontermwithintheinstantongas v i picture. Themodelproducesasecond-ordertransitionforNf =2andafirst-ordertransitionfor X N =3,andrecoversaphysicaltemperaturedependenceofthetopologicalsusceptibility. f r a TheXXVIIInternationalSymposiumonLatticeFieldTheory-LAT2009 July26-312009 PekingUniversity,Beijing,China Speaker. ∗ (cid:13)c Copyrightownedbytheauthor(s)underthetermsoftheCreativeCommonsAttribution-NonCommercial-ShareAlikeLicence. http://pos.sissa.it/ Chiralphasetransitioninarandommatrixmodelwiththreeflavors TakashiSano 1. Introduction One of the prominent features of non-perturbative QCD is spontaneous breaking of chiral symmetryinthelightquarksector. AccordingtotheBanks-Casherrelation[1],theorderparameter q¯q isrelated tothe Diracspectral density atzero eigenvalue inthethermodynamic limit. Within h i the so-called e regime characterized by the system size L4 such that mp 1/L 1 GeV, the ≪ ≪ QCD partition function is dominated by the constant pion field configurations. In this regime, universal properties of the Dirac eigenvalue distribution near zero are legitimately analyzed in a chiralrandommatrix(ChRM)theory[2],wherethekinetictermoftheDiracoperatorisdiscarded and the complexity of the gauge field dynamics is represented by treating the Dirac operator as a random matrix of constant modes. The matrix size of the constant modes 2N is considered to be proportional to the system volume. By taking a large volume limit N ¥ , away from the e → regime, one can study thermodynamics of the ChRM theory as a schematic mean-field model for QCD. One finds the ground state of the model in the chirally broken phase and can explore the modelphasediagram byintroducing thetemperaturet [3]andthequarkchemicalpotential m [4]. There are two drawbacks, however, in the ChRM model, concerning the U (1) symmetry. A Firstly,theU (1)-breaking determinant termismissingintheeffectiveactionofthemodel,which A consequently predicts a second-order phase transition at finite temperature for any number of the quark flavors N . Secondly, the topological susceptibility is suppressed unphysically to vanish at f finitetemperatures. In an earlier work [5], the appropriate form of the ChRM model with a U (1)-breaking term A is speculated from aquark model withthe determinant interaction in0+1 dimensions. Inaddition totheconstant modesintheconventional ChRMmodel, newconstant modesareintroduced soas to reproduce the determinant interaction. These new modes are considered to be associated with instantons andcalledtopological zeromodes. Howevertheeffectivepotentialofthestartingquark modelisunbounded frombelowforN =3,andtherefore nophysical groundstateexists. f Inthis paper wepropose a new ChRMmodel [6]changing the distribution ofthe topological zeromodes,whichresultsinthedeterminanttermappearing underalogarithm. Thentheeffective potentialbecomesstableforanyN ,anddescribesasecond-orderphasetransitionforN =2while f f afirst-ordertransitionforN =3. Moreover,thetopologicalsusceptibilityshowsphysicalbehavior f asafunction oftemperature inourmodel. 2. Chiral random matrix model atfinite temperature In analogy with the QCD partition function, the ChRM model with N flavors of mass m is f f definedasanaverageofthequarkdeterminants [3] Nf Zn = dWe−NS 2trW†W (cid:213) det(D+mf), (2.1) Z f=1 wheretheDiracoperatorhasbeenreplacedwithananti-Hermitematrixofconstant modes D= iW†+it01N n /2 iW+it01N−|n |/2! (2.2) −| | 2 Chiralphasetransitioninarandommatrixmodelwiththreeflavors TakashiSano with an (N+n /2) (N n /2) complex matrix W. The Gaussian random distribution of W is × − a simple realization of the complexity of the gluon dynamics. Chiral symmetry is retained as a fact D,g5 =0with g5 =diag(1N+n /2, 1N n /2). The temperature effect has been introduced in { } − − the Dirac operator withaconstant t, which maybe interpreted as the lowest Matsubara frequency p T. One can easily show that this matrix D has n exact zero eigenvalues, which are interpreted | | as the zero modes accompanied by the topological charge n . The complete partition function is obtained after the sum over n weighted by the quenched topological susceptibility t of the pure gluondynamics: Zq = (cid:229)2N e−2(2nN2)t einq Zn , (2.3) n = 2N − wheretheq anglehasbeenintroduced. After rewriting the determinant with the fermion variables and doing the Gaussian integral of W in Zn , we find a four-fermion vertex interaction, which can be unfolded by introducing an N N auxiliary variable S q†q . Weperform the fermion integral to obtain an expression for f × f ∼ L R Zn intermsofS, n det(S+M)n (n 0) Zn =Z dSe−NS 2tr(SS†)det (S+M)(S†+M)+t2 N−|2| ×(det(S†+M†)−n (n ≥<0) , (2.4) (cid:0) (cid:1) whereM =diag(m ,...,m ). 1 Nf Inthethermodynamiclimitwesetn =0andevaluateEq.(2.4)withthesaddlepointequation. ForS(cid:181) 1 andM =0, theN dependence isfactored outinthe saddle point equation, implying Nf f a second order phase transition for any number of Nf. Furthermore, Zn is non-analytic in n as theintegrand contains atermwith n ,whichcauses theunphysical suppression ofthetopological | | susceptibility atfinitetemperatures [7]. Notethat n disappears whent =0. | | 3. Chiral random matrix model withdeterminant interaction Near-zeromodesandtopological zeromodes–Letusfirstrecalltheinstantongaspicture. An isolated instanton isa localized object accompanying aright-handed exact fermion zero mode. In a dilute system of N instantons and N anti-instantons, we expect N right-handed and N left- + + − − handed zero modes even at finite temperatures. In an effective theory at long distances, effects of the instantons should be integrated out, which willresult inU (1)-breaking effective interactions. A Thefundamentalassumption inourmodelistheclassification oftheconstantmodesintothenear- zeromodesandthetopologicalzeromodes[5,6]. Wedealwiththe2N near-zeromodesappearing intheconventional modelsandadditionally theN +N topological zeromodeswhichweregard + − asthemodesaccompaniedbytheinstantons. Inourmodel,N fluctuateaccordingtotheinstanton distribution, andthenumberoftheexactzeromodesisgiven±byn =N N . Eventuallywesum + − − overN andN assumingacertaindistribution withthemeanvalueofO(N). + − WewritedownaGaussianChRMmodelfordefinitenumbersofzeromodesas[5,6] Nf ZN = dAdBdXdYe NS 2tr(AA†+BB†+XX†+YY†)(cid:213) det(D+m ) (3.1) N+,N − f − Z f=1 3 Chiralphasetransitioninarandommatrixmodelwiththreeflavors TakashiSano with 0 iA+it1 0 iX N iA†+it1 0 iY 0 D= N  , (3.2) 0 iY† 0 iB    iX† 0 iB† 0      wherethematrixAcorrespondstothenear-zeromodesoftheconventionalmodelandtheN N + × − matrixBrepresentsthetopological zeromodes. ThematricesX andY inducemixingamongthese modes. Notethatthetemperaturetermt isintroduced onlyforthenear-zeromodes. Followingthe same steps as in Sec. 2, we find the sigma model representation for this ChRM model, which is analytic inN aswellasN unlikeEq.(2.4): ± ZNN+,N = dSe−NS 2trS†S det (S+M)(S†+M†)+t2 N det(S+M)N+ det(S†+M†)N−. (3.3) − Z (cid:2) (cid:3) Distribution ofthetopological zeromodes–Thecomplete partition function isobtained after summing ZN over the instanton numbers N and N . Here we simply assume independent distributionsN+P,N(N− )forN andN ,i.e., + − + ± − Zq =N+(cid:229) ,N einq P(N+)P(N−)ZNN+,N− =Z dSe−2NW (S;t,m,q ). (3.4) − LetusfirstconsiderP(N )inadiluteinstantongaspicture. Foraone-instanton configuration, one may assign a weight k c±ompared with a no-instanton configuration, and multiply a factor N (cid:181) V taking into account the integration over the instanton location. For a configuration with N +( ) − (anti-)instantons, wethenhaveaPoissondistribution 1 P (N )= (k N)N (3.5) Po ± N ! ± ± where the factorial N ! appears as the symmetry factor. The summation with P (N ) in +( ) Po − ± Eq.(3.4)resultsintheexponentiation ofthedeterminant term[5]: W =1S 2trSS† 1lndet (S+M)(S†+M†)+t2 1k [eiq det(S+M)+e iq det(S†+M†)]. Po 2 −2 −2 − (3.6) (cid:2) (cid:3) This determinant term is commonly incorporated in effective models as the U (1) anomaly term. A HoweverthispotentialisunboundforN =3intheChRMmodelbecausethetermdet(S+M) f ∼ f 3 forlargeS=f 1 dominates overtheothertermsinW . Nf Po It should be noticed here that the fermion coupling distorts the N distribution itself. With ± includingthedeterminanttermofthetopologicalzeromodesinEq.(3.3),theeffectivedistribution forN reads + 1 P (N )= (k Nd)N+ (3.7) Po + N ! + with d = det(S+M), and similarley for N . This means that the average value of N increases indefinitel|y with increa|sing d f Nf as N −=k Nd. However, the possibility of infin±itely many ∼ h ±i 4 Chiralphasetransitioninarandommatrixmodelwiththreeflavors TakashiSano f f 1.4 1.4 1.2 1.2 1 1 0.8 0.8 0.6 0.6 0.4 0.4 0.2 0.2 0.2 0.2 0 0.15 0 0.15 0 0.5 0.1 m 0.6 0.8 0.1 m t 1 1.5 2 0 0.05 t 1 1.2 1.4 0 0.05 Figure1:Chiralcondensatef asafunctionoft andmforN =2(left)and3(right). f degrees offreedom N within afinitevolume isinadequate for aregularized low-energy effective ± theory. WeneedacutoffforN . ± HerewesetexplicitlyamaximumvalueofO(N)forN . Wesplitthefinitespace-timevolume intog N cellswithg beingaconstantofO(1),andassignap±robability pforacelltobeoccupiedby asingle(anti-)instanton and(1 p)foracellunoccupied. Thisassumption resultsinthebinomial − distributions forN : ± g N P(N )= pN (1 p)gN N . (3.8) ± N ! ± − − ± ± Forasmall pandalarge g N,thebinomial distribution P(N )isaccurately approximated withthe Poisson distribution withthemeang Np. Butitcannot bea±good approximation foralarge p. The binomialdistributionprovidesastringentupperboundg N forthenumberofmodesN ,incontrast ± tothePoissondistribution. Thecorresponding effectivepotential forSisfoundtobe W (S;t,m,q )=1S 2trSS† 1lndet (S+M)(S†+M†)+t2 2 −2 1g ln eiq a det((cid:2)S+M)+1 +ln e iq a(cid:3)det(S†+M†)+1 (3.9) −2 − h (cid:16) (cid:17) (cid:16) (cid:17)i witha = p/(1 p). − Thevarianceofthetopological chargen =N N forthebinomialdistribution iscomputed + as 2Nt =2Ng p(1 p), where t isthe quenched to−polo−gical susceptibility. In the presence of the − fermioncoupling, thissusceptibility willbereplaced with a d t˜=g p˜(1 p˜)=g . (3.10) − (a d+1)2 4. Ground stateand fluctuations In this section we shall study ground state properties of the system with equal mass, M = m1 ,forsimplicity. SettingS=f 1 withrealf andwithq =0,weobtain asimpleformofthe Nf Nf grandpotential: W (f ;t,m)=1N S 2f 2 1N ln (f +m)2+t2 1g ln a (f +m)Nf +1 2 . (4.1) 2 f −2 f −2 (cid:2) (cid:3) (cid:12) (cid:12) (cid:12) (cid:12) 5 Chiralphasetransitioninarandommatrixmodelwiththreeflavors TakashiSano Nf = 2 Nf = 3 2 s0 2 s0 ps0 ps0 s s 1.5 ps 1.5 ps 2M 1 2M 1 0.5 0.5 0 0 0 0.5 1 1.5 2 2.5 3 0 0.5 1 1.5 2 t t Figure2:Temperaturedependenceofthemesonicmassesintheflavor-singletscalar(s0)andpseudo-scalar (ps0)channelsandintheflavor-nonsingletscalar(s)andpseudo-scalar(ps)channelsform=0(thicklines) andm=0(thinlines). Wesetm=0.1(m =0.0265)asnonzeroquarkmassforN =2(3). c f 6 ThefactorN cannotbefactored outinthepotential W becauseoftheanomalytermhere. f Inthethermodynamiclimitwecalculatethequarkcondensate q¯q (cid:181) f forS =1,a =0.3and h i g =2inFig.1. Thechiralphasetransition isthesecondorderforN =2inthechirallimit,while f it is the first order for N =3 and for m<m =0.0265. The mesonic masses can be defined as f c W (S)=W +1M2s a2+1M2 p a2+ with S=f +l a(s a+ip a)/√2 parametrized with U(N) 0 2 sa 2 psa ··· generators (tr(l al b)=2d ab). Thetemperature dependence ofthemassesareshowninFig.2. For pseudo-scalar flavor-nonsinglet masseswefindtheGell-Mann–Oakes–Renner relation (f +m)2M2 =mS 2(f +m) m q¯q , (4.2) ps ∼− h i if we identify f +m as the pion decay constant fp . On the other hand, the flavor singlet-masses haveanadditional contribution fromtheanomalytermas M2 =M2 D M2, M2 =M2 +D M2 (4.3) s0 s 0 ps0 ps 0 − with D M2 N t˜/(f +m)2. The would-be Nambu-Goldstone mode becomes massive due to the 0 ≡ f coupling to the U (1) interaction D M2, and the mass gap is related to the (replaced) quenched A 0 susceptibility t˜,similarlytotheWitten-Veneziano formula. The topological susceptibility is obtained as c top = ¶ 2W (S(q );q )/¶q 2 q =0 with the saddle | pointsolution S(q )=f +ih (q )l 0/√2forsmallq ,andwefind[7,6] 0 1 1 1 = + . (4.4) c t˜ t top m Here t˜ is the modified susceptibility defined in Eq. (3.10). The fermion coupling screens c via top thecontribution S 2m(f +m) M2(f +m)2 t = = ps . (4.5) m N N f f Noting that theq dependence can beabsorbed into thequark massterm asmeiq /Nf, onecan show theaxialWardidentity m2 m c = c q¯q . (4.6) top ps0 −N −N h i f f 6 Chiralphasetransitioninarandommatrixmodelwiththreeflavors TakashiSano Nf = 2 Nf = 3 1 1 m = 0.10 m = 0.10 0.8 00..0051 0.8 0 .m01c 0) 0) (top 0.6 (top 0.6 c(t) / top 0.4 c(t) / top 0.4 c 0.2 c 0.2 0 0 0 0.5 1 1.5 2 2.5 3 0 0.5 1 1.5 2 t t Figure3: Temperaturedependenceoftopologicalsusceptibilityc (t)forN =2and3. top f Since thepseudo-scalar mesonintheflavor singlet channel hasnonzero mass(4.3)because ofthe U (1)-breaking term, thepseudo-scalar singlet susceptibility remains finiteinthebroken phasein A the chiral limit. Thus for the small but nonzero quark mass m, the decrease of c follows the top chiralcondensate q¯q f withincreasingt,whichisclearlyobserved inFig.3. h i∼ 5. Summary We have presented a chiral random matrix model where the determinant interaction is incor- porated bysumming up the topological zero modes with thebinomial distribution [6]. Themodel has a stable ground state unlike the model of [5], and describes the N dependence of the chiral f phase transition. Atthesametimeitreproduces thephysical temperature dependence ofthetopo- logical susceptibility. This model can be applied to the 2+1 flavor case at finite temperature and density [8]. ThisworkissupportedinpartbyGrants-in-AidofMEXT,Japan(No.19540269and19540273). References [1] T.BanksandA.Casher,Nucl.Phys.B169(1980),103. [2] E.V.ShuryakandJ.J.M.Verbaarschot,Nucl.Phys.A560(1993)306; forreview,J.J.M.VerbaarschotandT.Wettig,Ann.Rev.Nucl.Part.Sci.50(2000)343. [3] A.D.JacksonandJ.J.M.Verbaarschot,Phys.Rev.D53(1996)7223; T.Wettig,A.SchäferandH.A.Weidenmüller,Phys.Lett.B367(1996)28[Erratumibid.B374 (1996)362]. [4] M.A.Stephanov,Phys.Rev.Lett.76,4472(1996); A.M.Halaszetal.,Phys.Rev.D58(1998)096007. [5] R.A.Janik,M.A.NowakandI.Zahed,Phys.Lett.B392(1997)155. [6] T.Sano,H.FujiiandM.Ohtani,Phys.Rev.D80(2009)034007. [7] M.Ohtani,C.Lehner,T.WettigandT.Hatsuda,Mod.Phys.Lett.A23(2008)2465; C.Lehner,M.Ohtani,J.J.M.VerbaarschotandT.Wettig,Phys.Rev.D79(2009)074016. [8] H.FujiiandT.Sano,intheseproceedings,PoS(LAT2009)189. 7

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.