Chiral phase transition in a random matrix model 0 with three flavors 1 0 2 n a J 0 HirotsuguFujii 2 InstituteofPhysics,UniversityofTokyo,Tokyo153-8902,Japan ] t a MunehisaOhtani l - p PhysicsDepartment,SchoolofMedicine,KyorinUniversity,Tokyo181-8611,Japan e h TakashiSano ∗ [ DepartmentofPhysics,UniversityofTokyo,Tokyo113-0033,Japan 1 InstituteofPhysics,UniversityofTokyo,Tokyo153-8902,Japan v E-mail:[email protected] 0 4 6 The chiralphase transition in the conventionalrandommatrix modelis the second order in the 3 . chirallimit,irrespectiveofthenumberofflavorsNf,becauseitlackstheUA(1)-breakingdeter- 1 0 minantinteractionterm. Furthermore,itpredictsanunphysicalvalueofzeroforthetopological 0 susceptibility at finite temperatures. We propose a new chiral random matrix model which re- 1 : solvesthesedifficultiesbyincorporatingthedeterminantinteractiontermwithintheinstantongas v i picture. Themodelproducesasecond-ordertransitionforNf =2andafirst-ordertransitionfor X N =3,andrecoversaphysicaltemperaturedependenceofthetopologicalsusceptibility. f r a TheXXVIIInternationalSymposiumonLatticeFieldTheory-LAT2009 July26-312009 PekingUniversity,Beijing,China Speaker. ∗ (cid:13)c Copyrightownedbytheauthor(s)underthetermsoftheCreativeCommonsAttribution-NonCommercial-ShareAlikeLicence. http://pos.sissa.it/ Chiralphasetransitioninarandommatrixmodelwiththreeflavors TakashiSano 1. Introduction One of the prominent features of non-perturbative QCD is spontaneous breaking of chiral symmetryinthelightquarksector. AccordingtotheBanks-Casherrelation[1],theorderparameter q¯q isrelated tothe Diracspectral density atzero eigenvalue inthethermodynamic limit. Within h i the so-called e regime characterized by the system size L4 such that mp 1/L 1 GeV, the ≪ ≪ QCD partition function is dominated by the constant pion field configurations. In this regime, universal properties of the Dirac eigenvalue distribution near zero are legitimately analyzed in a chiralrandommatrix(ChRM)theory[2],wherethekinetictermoftheDiracoperatorisdiscarded and the complexity of the gauge field dynamics is represented by treating the Dirac operator as a random matrix of constant modes. The matrix size of the constant modes 2N is considered to be proportional to the system volume. By taking a large volume limit N ¥ , away from the e → regime, one can study thermodynamics of the ChRM theory as a schematic mean-field model for QCD. One finds the ground state of the model in the chirally broken phase and can explore the modelphasediagram byintroducing thetemperaturet [3]andthequarkchemicalpotential m [4]. There are two drawbacks, however, in the ChRM model, concerning the U (1) symmetry. A Firstly,theU (1)-breaking determinant termismissingintheeffectiveactionofthemodel,which A consequently predicts a second-order phase transition at finite temperature for any number of the quark flavors N . Secondly, the topological susceptibility is suppressed unphysically to vanish at f finitetemperatures. In an earlier work [5], the appropriate form of the ChRM model with a U (1)-breaking term A is speculated from aquark model withthe determinant interaction in0+1 dimensions. Inaddition totheconstant modesintheconventional ChRMmodel, newconstant modesareintroduced soas to reproduce the determinant interaction. These new modes are considered to be associated with instantons andcalledtopological zeromodes. Howevertheeffectivepotentialofthestartingquark modelisunbounded frombelowforN =3,andtherefore nophysical groundstateexists. f Inthis paper wepropose a new ChRMmodel [6]changing the distribution ofthe topological zeromodes,whichresultsinthedeterminanttermappearing underalogarithm. Thentheeffective potentialbecomesstableforanyN ,anddescribesasecond-orderphasetransitionforN =2while f f afirst-ordertransitionforN =3. Moreover,thetopologicalsusceptibilityshowsphysicalbehavior f asafunction oftemperature inourmodel. 2. Chiral random matrix model atfinite temperature In analogy with the QCD partition function, the ChRM model with N flavors of mass m is f f definedasanaverageofthequarkdeterminants [3] Nf Zn = dWe−NS 2trW†W (cid:213) det(D+mf), (2.1) Z f=1 wheretheDiracoperatorhasbeenreplacedwithananti-Hermitematrixofconstant modes D= iW†+it01N n /2 iW+it01N−|n |/2! (2.2) −| | 2 Chiralphasetransitioninarandommatrixmodelwiththreeflavors TakashiSano with an (N+n /2) (N n /2) complex matrix W. The Gaussian random distribution of W is × − a simple realization of the complexity of the gluon dynamics. Chiral symmetry is retained as a fact D,g5 =0with g5 =diag(1N+n /2, 1N n /2). The temperature effect has been introduced in { } − − the Dirac operator withaconstant t, which maybe interpreted as the lowest Matsubara frequency p T. One can easily show that this matrix D has n exact zero eigenvalues, which are interpreted | | as the zero modes accompanied by the topological charge n . The complete partition function is obtained after the sum over n weighted by the quenched topological susceptibility t of the pure gluondynamics: Zq = (cid:229)2N e−2(2nN2)t einq Zn , (2.3) n = 2N − wheretheq anglehasbeenintroduced. After rewriting the determinant with the fermion variables and doing the Gaussian integral of W in Zn , we find a four-fermion vertex interaction, which can be unfolded by introducing an N N auxiliary variable S q†q . Weperform the fermion integral to obtain an expression for f × f ∼ L R Zn intermsofS, n det(S+M)n (n 0) Zn =Z dSe−NS 2tr(SS†)det (S+M)(S†+M)+t2 N−|2| ×(det(S†+M†)−n (n ≥<0) , (2.4) (cid:0) (cid:1) whereM =diag(m ,...,m ). 1 Nf Inthethermodynamiclimitwesetn =0andevaluateEq.(2.4)withthesaddlepointequation. ForS(cid:181) 1 andM =0, theN dependence isfactored outinthe saddle point equation, implying Nf f a second order phase transition for any number of Nf. Furthermore, Zn is non-analytic in n as theintegrand contains atermwith n ,whichcauses theunphysical suppression ofthetopological | | susceptibility atfinitetemperatures [7]. Notethat n disappears whent =0. | | 3. Chiral random matrix model withdeterminant interaction Near-zeromodesandtopological zeromodes–Letusfirstrecalltheinstantongaspicture. An isolated instanton isa localized object accompanying aright-handed exact fermion zero mode. In a dilute system of N instantons and N anti-instantons, we expect N right-handed and N left- + + − − handed zero modes even at finite temperatures. In an effective theory at long distances, effects of the instantons should be integrated out, which willresult inU (1)-breaking effective interactions. A Thefundamentalassumption inourmodelistheclassification oftheconstantmodesintothenear- zeromodesandthetopologicalzeromodes[5,6]. Wedealwiththe2N near-zeromodesappearing intheconventional modelsandadditionally theN +N topological zeromodeswhichweregard + − asthemodesaccompaniedbytheinstantons. Inourmodel,N fluctuateaccordingtotheinstanton distribution, andthenumberoftheexactzeromodesisgiven±byn =N N . Eventuallywesum + − − overN andN assumingacertaindistribution withthemeanvalueofO(N). + − WewritedownaGaussianChRMmodelfordefinitenumbersofzeromodesas[5,6] Nf ZN = dAdBdXdYe NS 2tr(AA†+BB†+XX†+YY†)(cid:213) det(D+m ) (3.1) N+,N − f − Z f=1 3 Chiralphasetransitioninarandommatrixmodelwiththreeflavors TakashiSano with 0 iA+it1 0 iX N iA†+it1 0 iY 0 D= N , (3.2) 0 iY† 0 iB iX† 0 iB† 0 wherethematrixAcorrespondstothenear-zeromodesoftheconventionalmodelandtheN N + × − matrixBrepresentsthetopological zeromodes. ThematricesX andY inducemixingamongthese modes. Notethatthetemperaturetermt isintroduced onlyforthenear-zeromodes. Followingthe same steps as in Sec. 2, we find the sigma model representation for this ChRM model, which is analytic inN aswellasN unlikeEq.(2.4): ± ZNN+,N = dSe−NS 2trS†S det (S+M)(S†+M†)+t2 N det(S+M)N+ det(S†+M†)N−. (3.3) − Z (cid:2) (cid:3) Distribution ofthetopological zeromodes–Thecomplete partition function isobtained after summing ZN over the instanton numbers N and N . Here we simply assume independent distributionsN+P,N(N− )forN andN ,i.e., + − + ± − Zq =N+(cid:229) ,N einq P(N+)P(N−)ZNN+,N− =Z dSe−2NW (S;t,m,q ). (3.4) − LetusfirstconsiderP(N )inadiluteinstantongaspicture. Foraone-instanton configuration, one may assign a weight k c±ompared with a no-instanton configuration, and multiply a factor N (cid:181) V taking into account the integration over the instanton location. For a configuration with N +( ) − (anti-)instantons, wethenhaveaPoissondistribution 1 P (N )= (k N)N (3.5) Po ± N ! ± ± where the factorial N ! appears as the symmetry factor. The summation with P (N ) in +( ) Po − ± Eq.(3.4)resultsintheexponentiation ofthedeterminant term[5]: W =1S 2trSS† 1lndet (S+M)(S†+M†)+t2 1k [eiq det(S+M)+e iq det(S†+M†)]. Po 2 −2 −2 − (3.6) (cid:2) (cid:3) This determinant term is commonly incorporated in effective models as the U (1) anomaly term. A HoweverthispotentialisunboundforN =3intheChRMmodelbecausethetermdet(S+M) f ∼ f 3 forlargeS=f 1 dominates overtheothertermsinW . Nf Po It should be noticed here that the fermion coupling distorts the N distribution itself. With ± includingthedeterminanttermofthetopologicalzeromodesinEq.(3.3),theeffectivedistribution forN reads + 1 P (N )= (k Nd)N+ (3.7) Po + N ! + with d = det(S+M), and similarley for N . This means that the average value of N increases indefinitel|y with increa|sing d f Nf as N −=k Nd. However, the possibility of infin±itely many ∼ h ±i 4 Chiralphasetransitioninarandommatrixmodelwiththreeflavors TakashiSano f f 1.4 1.4 1.2 1.2 1 1 0.8 0.8 0.6 0.6 0.4 0.4 0.2 0.2 0.2 0.2 0 0.15 0 0.15 0 0.5 0.1 m 0.6 0.8 0.1 m t 1 1.5 2 0 0.05 t 1 1.2 1.4 0 0.05 Figure1:Chiralcondensatef asafunctionoft andmforN =2(left)and3(right). f degrees offreedom N within afinitevolume isinadequate for aregularized low-energy effective ± theory. WeneedacutoffforN . ± HerewesetexplicitlyamaximumvalueofO(N)forN . Wesplitthefinitespace-timevolume intog N cellswithg beingaconstantofO(1),andassignap±robability pforacelltobeoccupiedby asingle(anti-)instanton and(1 p)foracellunoccupied. Thisassumption resultsinthebinomial − distributions forN : ± g N P(N )= pN (1 p)gN N . (3.8) ± N ! ± − − ± ± Forasmall pandalarge g N,thebinomial distribution P(N )isaccurately approximated withthe Poisson distribution withthemeang Np. Butitcannot bea±good approximation foralarge p. The binomialdistributionprovidesastringentupperboundg N forthenumberofmodesN ,incontrast ± tothePoissondistribution. Thecorresponding effectivepotential forSisfoundtobe W (S;t,m,q )=1S 2trSS† 1lndet (S+M)(S†+M†)+t2 2 −2 1g ln eiq a det((cid:2)S+M)+1 +ln e iq a(cid:3)det(S†+M†)+1 (3.9) −2 − h (cid:16) (cid:17) (cid:16) (cid:17)i witha = p/(1 p). − Thevarianceofthetopological chargen =N N forthebinomialdistribution iscomputed + as 2Nt =2Ng p(1 p), where t isthe quenched to−polo−gical susceptibility. In the presence of the − fermioncoupling, thissusceptibility willbereplaced with a d t˜=g p˜(1 p˜)=g . (3.10) − (a d+1)2 4. Ground stateand fluctuations In this section we shall study ground state properties of the system with equal mass, M = m1 ,forsimplicity. SettingS=f 1 withrealf andwithq =0,weobtain asimpleformofthe Nf Nf grandpotential: W (f ;t,m)=1N S 2f 2 1N ln (f +m)2+t2 1g ln a (f +m)Nf +1 2 . (4.1) 2 f −2 f −2 (cid:2) (cid:3) (cid:12) (cid:12) (cid:12) (cid:12) 5 Chiralphasetransitioninarandommatrixmodelwiththreeflavors TakashiSano Nf = 2 Nf = 3 2 s0 2 s0 ps0 ps0 s s 1.5 ps 1.5 ps 2M 1 2M 1 0.5 0.5 0 0 0 0.5 1 1.5 2 2.5 3 0 0.5 1 1.5 2 t t Figure2:Temperaturedependenceofthemesonicmassesintheflavor-singletscalar(s0)andpseudo-scalar (ps0)channelsandintheflavor-nonsingletscalar(s)andpseudo-scalar(ps)channelsform=0(thicklines) andm=0(thinlines). Wesetm=0.1(m =0.0265)asnonzeroquarkmassforN =2(3). c f 6 ThefactorN cannotbefactored outinthepotential W becauseoftheanomalytermhere. f Inthethermodynamiclimitwecalculatethequarkcondensate q¯q (cid:181) f forS =1,a =0.3and h i g =2inFig.1. Thechiralphasetransition isthesecondorderforN =2inthechirallimit,while f it is the first order for N =3 and for m<m =0.0265. The mesonic masses can be defined as f c W (S)=W +1M2s a2+1M2 p a2+ with S=f +l a(s a+ip a)/√2 parametrized with U(N) 0 2 sa 2 psa ··· generators (tr(l al b)=2d ab). Thetemperature dependence ofthemassesareshowninFig.2. For pseudo-scalar flavor-nonsinglet masseswefindtheGell-Mann–Oakes–Renner relation (f +m)2M2 =mS 2(f +m) m q¯q , (4.2) ps ∼− h i if we identify f +m as the pion decay constant fp . On the other hand, the flavor singlet-masses haveanadditional contribution fromtheanomalytermas M2 =M2 D M2, M2 =M2 +D M2 (4.3) s0 s 0 ps0 ps 0 − with D M2 N t˜/(f +m)2. The would-be Nambu-Goldstone mode becomes massive due to the 0 ≡ f coupling to the U (1) interaction D M2, and the mass gap is related to the (replaced) quenched A 0 susceptibility t˜,similarlytotheWitten-Veneziano formula. The topological susceptibility is obtained as c top = ¶ 2W (S(q );q )/¶q 2 q =0 with the saddle | pointsolution S(q )=f +ih (q )l 0/√2forsmallq ,andwefind[7,6] 0 1 1 1 = + . (4.4) c t˜ t top m Here t˜ is the modified susceptibility defined in Eq. (3.10). The fermion coupling screens c via top thecontribution S 2m(f +m) M2(f +m)2 t = = ps . (4.5) m N N f f Noting that theq dependence can beabsorbed into thequark massterm asmeiq /Nf, onecan show theaxialWardidentity m2 m c = c q¯q . (4.6) top ps0 −N −N h i f f 6 Chiralphasetransitioninarandommatrixmodelwiththreeflavors TakashiSano Nf = 2 Nf = 3 1 1 m = 0.10 m = 0.10 0.8 00..0051 0.8 0 .m01c 0) 0) (top 0.6 (top 0.6 c(t) / top 0.4 c(t) / top 0.4 c 0.2 c 0.2 0 0 0 0.5 1 1.5 2 2.5 3 0 0.5 1 1.5 2 t t Figure3: Temperaturedependenceoftopologicalsusceptibilityc (t)forN =2and3. top f Since thepseudo-scalar mesonintheflavor singlet channel hasnonzero mass(4.3)because ofthe U (1)-breaking term, thepseudo-scalar singlet susceptibility remains finiteinthebroken phasein A the chiral limit. Thus for the small but nonzero quark mass m, the decrease of c follows the top chiralcondensate q¯q f withincreasingt,whichisclearlyobserved inFig.3. h i∼ 5. Summary We have presented a chiral random matrix model where the determinant interaction is incor- porated bysumming up the topological zero modes with thebinomial distribution [6]. Themodel has a stable ground state unlike the model of [5], and describes the N dependence of the chiral f phase transition. Atthesametimeitreproduces thephysical temperature dependence ofthetopo- logical susceptibility. This model can be applied to the 2+1 flavor case at finite temperature and density [8]. ThisworkissupportedinpartbyGrants-in-AidofMEXT,Japan(No.19540269and19540273). References [1] T.BanksandA.Casher,Nucl.Phys.B169(1980),103. [2] E.V.ShuryakandJ.J.M.Verbaarschot,Nucl.Phys.A560(1993)306; forreview,J.J.M.VerbaarschotandT.Wettig,Ann.Rev.Nucl.Part.Sci.50(2000)343. [3] A.D.JacksonandJ.J.M.Verbaarschot,Phys.Rev.D53(1996)7223; T.Wettig,A.SchäferandH.A.Weidenmüller,Phys.Lett.B367(1996)28[Erratumibid.B374 (1996)362]. [4] M.A.Stephanov,Phys.Rev.Lett.76,4472(1996); A.M.Halaszetal.,Phys.Rev.D58(1998)096007. [5] R.A.Janik,M.A.NowakandI.Zahed,Phys.Lett.B392(1997)155. [6] T.Sano,H.FujiiandM.Ohtani,Phys.Rev.D80(2009)034007. [7] M.Ohtani,C.Lehner,T.WettigandT.Hatsuda,Mod.Phys.Lett.A23(2008)2465; C.Lehner,M.Ohtani,J.J.M.VerbaarschotandT.Wettig,Phys.Rev.D79(2009)074016. [8] H.FujiiandT.Sano,intheseproceedings,PoS(LAT2009)189. 7