Table Of ContentChemometric Monitoring:
Product Quality Assessment,
Process Fault Detection,
and Applications
Chemometric Monitoring:
Product Quality Assessment,
Process Fault Detection,
and Applications
By
Madhusree Kundu, Palash Kumar Kundu,
and Seshu Kumar Damarla
MATLAB® is a trademark of The MathWorks, Inc. and is used with permission. The MathWorks does not warrant the
accuracy of the text or exercises in this book. This book’s use or discussion of MATLAB® software or related products
does not constitute endorsement or sponsorship by The MathWorks of a particular pedagogical approach or particular
use of the MATLAB® software.
CRC Press
Taylor & Francis Group
6000 Broken Sound Parkway NW, Suite 300
Boca Raton, FL 33487-2742
© 2018 by Taylor & Francis Group, LLC
CRC Press is an imprint of Taylor & Francis Group, an Informa business
No claim to original U.S. Government works
Printed on acid-free paper
International Standard Book Number-13: 978-1-3151-5513-5 (Hardback)
This book contains information obtained from authentic and highly regarded sources. Reasonable efforts have been made to
publish reliable data and information, but the author and publisher cannot assume responsibility for the validity of all materials
or the consequences of their use. The authors and publishers have attempted to trace the copyright holders of all material
reproduced in this publication and apologize to copyright holders if permission to publish in this form has not been obtained. If
any copyright material has not been acknowledged please write and let us know so we may rectify in any future reprint.
Except as permitted under U.S. Copyright Law, no part of this book may be reprinted, reproduced, transmitted, or utilized in any
form by any electronic, mechanical, or other means, now known or hereafter invented, including photocopying, microfilming,
and recording, or in any information storage or retrieval system, without written permission from the publishers.
For permission to photocopy or use material electronically from this work, please access www.copyright.com (http://
www.copyright.com/) or contact the Copyright Clearance Center, Inc. (CCC), 222 Rosewood Drive, Danvers, MA 01923,
978-750-8400. CCC is a not-for-profit organization that provides licenses and registration for a variety of users. For organizations
that have been granted a photocopy license by the CCC, a separate system of payment has been arranged.
Trademark Notice: Product or corporate names may be trademarks or registered trademarks, and are used only for
identification and explanation without intent to infringe.
Library of Congress Cataloging-in-Publication Data
Names: Kundu, Madhusree, author. | Kundu, Palash Kumar, author. | Damarla,
Seshu K., author.
Title: Chemometric monitoring : product quality assessment, process fault
detection and applications / Madhusree Kundu, Palash Kumar Kundu, Seshu K.
Damarla.
Description: Boca Raton : CRC Press, 2018. | Includes bibliographical
references and index.
Identifiers: LCCN 2017015762| ISBN 9781498780070 (hardback : acid-free paper)
| ISBN 9781315155135 (ebook)
Subjects: LCSH: Chemometrics.
Classification: LCC QD75.4.C45 K86 2018 | DDC 543.01/5195–dc23
LC record available at https://lccn.loc.gov/2017015762
Visit the Taylor & Francis Web site at
http://www.taylorandfrancis.com
and the CRC Press Web site at
http://www.crcpress.com
Dedication
Dedicated in the fond memory of our beloved
brother, Late Pradyumna Majumer
Dr. Madhusree Kundu
Dr. Palash Kundu
Dedicated to my father, Late Damarla Venugopalarao
Seshu Kumar Damarla
Contents
Preface ...........................................................................................................................................xiii
Acknowledgments .....................................................................................................................xvii
About the Authors ......................................................................................................................xix
Introduction .................................................................................................................................xxi
Chapter 1 Data generation, collection, analysis, and preprocessing ................................1
1.1 Data: Different data types and presentation of data .......................................................1
1.2 Data generation: Design of experiments ...........................................................................4
1.2.1 Factorial design and illustration ...........................................................................5
1.2.1.1 The effect of Zn loading ........................................................................6
1.2.1.2 Two-factor interaction effects ...............................................................8
1.2.1.3 Three-factor interaction effects ............................................................8
1.3 Computer-based data acquisition ....................................................................................11
1.3.1 Sensor/transducer ................................................................................................11
1.3.2 Analog-to-digital (A/D) converter .....................................................................12
1.3.3 Digital-to-analog (D/A) converter ......................................................................12
1.4 Basic statistical measures and regression .......................................................................12
1.4.1 Mean, median, mode ............................................................................................12
1.4.2 Variance and standard deviation .......................................................................13
1.4.3 Covariance and correlation coefficient ..............................................................13
1.4.4 Frequency................................................................................................................14
1.4.5 Distribution ...........................................................................................................15
1.4.6 Uncertainty ............................................................................................................18
1.4.7 Confidence interval ..............................................................................................19
1.4.8 Hypothesis Testing ...............................................................................................21
1.4.9 Correlation .............................................................................................................27
1.4.10 Regression ..............................................................................................................27
1.4.11 Chi-squared test ....................................................................................................28
1.5 Stochastic and stationary processes .................................................................................29
1.6 Data preprocessing .............................................................................................................32
1.6.1 Outlier detection ...................................................................................................32
1.6.2 Data reconciliation ................................................................................................35
1.6.3 Data smoothing and filtering ..............................................................................37
1.6.3.1 Smoothing signal .................................................................................37
1.6.3.2 Filtering signal .....................................................................................40
1.6.4 Transform and transformation ...........................................................................42
References .....................................................................................................................................49
vii
viii Contents
Chapter 2 Chemometric techniques: Theoretical postulations .......................................51
2.1 Chemometrics .....................................................................................................................51
2.2 Principal component analysis (PCA) ...............................................................................52
2.2.1 PCA decomposition of data.................................................................................53
2.2.2 Principle of nearest neighborhood ....................................................................54
2.2.3 Hotelling T2 and Q statistics ...............................................................................55
2.3 Similarity .............................................................................................................................56
2.3.1 PCA similarity ......................................................................................................57
2.3.2 Distance-based similarity ....................................................................................59
2.3.3 Combined similarity factor .................................................................................60
2.3.4 Dissimilarity and Karhunen-Loeve (KL) expansion .......................................61
2.3.5 Moving window-based pattern matching using similarity/
dissimilarity factors .............................................................................................63
2.4 Clustering ............................................................................................................................65
2.4.1 Hierarchical clustering ........................................................................................65
2.4.2 Nonhierarchical clustering..................................................................................65
2.4.3 Modified K-means clustering using similarity factors ...................................66
2.5 Partial least squares (PLS) .................................................................................................69
2.5.1 Linear PLS ..............................................................................................................69
2.5.2 Dynamic PLS .........................................................................................................73
2.6 Cross-correlation coefficient .............................................................................................75
2.7 Sammon’s nonlinear mapping ..........................................................................................77
2.8 Moving window-based PCA .............................................................................................81
2.8.1 Mathematical postulates of recursive PCA.......................................................82
2.9 Discriminant function/hyperplane .................................................................................86
2.9.1 Linear discriminant analysis (LDA) ..................................................................87
2.9.2 Support vector machine (SVM) ..........................................................................90
2.9.2.1 Determination of decision function in SVM ....................................90
2.9.2.2 Determination of optimal separating hyperplane in SVM ...........92
2.10 Multiclass decision function .............................................................................................94
2.10.1 One against the rest approach ............................................................................94
2.10.2 One against one approach ...................................................................................94
2.10.3 Decision directed acyclic graph (DDAG)-based approach .............................95
2.10.3.1 DDAG algorithm ..................................................................................95
References .....................................................................................................................................97
Chapter 3 Classification among various process operating conditions .......................101
3.1 Yeast fermentation bioreactor process ...........................................................................102
3.1.1 Modeling and dynamic simulation of yeast fermentation bioreactor ........102
3.1.1.1 The process description ....................................................................102
3.1.1.2 Mathematical model ..........................................................................102
3.1.1.3 Analysis of dynamic behavior of yeast fermentation
bioreactor ........................................................................................105
3.1.2 Generation of process historical database for yeast
fermentation process ......................................................................................111
3.1.3 Application of modified K-means clustering algorithm on historical
database for yeast fermentation process .........................................................112
3.2 Commercial double-effect evaporator ...........................................................................112
3.2.1 Modeling and dynamic simulation of double effect evaporator .................112
Contents ix
3.2.1.1 The process description ....................................................................112
3.2.1.2 Mathematical model of double-effect evaporator .........................120
3.2.1.3 Analysis of dynamic behavior of double-effect evaporator
model ...................................................................................................122
3.2.2 Generation of historical database for double-effect evaporation process ..127
3.2.3 Application of modified K-means clustering algorithm on double-
effect evaporation process database .................................................................127
3.3 Continous crystallization process ..................................................................................128
3.3.1 Modeling and dynamic simulation of continuous
crystallization process ...................................................................................128
3.3.1.1 The process description ....................................................................131
3.3.1.2 Mathematical model of continuous crystallization process ........131
3.3.2 Generation of historical database for continuous crystallization process .133
3.3.3 Application of modified K-means clustering algorithm in
continuous crystallizer ......................................................................................134
References ...................................................................................................................................137
Chapter 4 Detection of abnormal operating conditions in processes using
moving window-based pattern matching ......................................................139
4.1 Detection of abnormal operating conditions in a fluid catalytic cracking unit ......140
4.1.1 Introduction to the fluid catalytic cracking (FCC) process ...........................140
4.1.2 FCC process description ....................................................................................141
4.1.3 Generation of historical database for FCC process ........................................142
4.1.4 Application of moving window-based pattern-matching algorithm on
historical database of FCC process ...................................................................143
4.2 Detection of abnormal operating conditions in continuous stirred tank heater ....151
4.2.1 Continuous stirred tank heater ........................................................................151
4.2.2 Generation of historical database for CSTH ...................................................154
4.2.3 Application of combined similarity factor and dissimilarity factor-
based pattern-matching algorithm on a CSTH historical database ............154
4.3 Detection of abnormal operating conditions in simulated industrial gas-phase
polyethylene reactor .........................................................................................................157
4.3.1 Simulated industrial gas-phase polyethylene reactor ...................................157
4.3.2 Generation of historical database for simulated industrial
polyethylene reactor ...........................................................................................160
4.3.3 Application of combined similarity factor and dissimilarity factor-
based pattern-matching algorithm on polyethylene historical database ...160
References .....................................................................................................................................166
Chapter 5 Design of an automated tea grader ...................................................................169
5.1 Electronic tongue: A biomimetic device .......................................................................169
5.2 Experimentation ...............................................................................................................173
5.2.1 E-tongue-based instrumentation and principles ...........................................173
5.2.2 E-tongue signature generation using various commercial brands of tea ..175
5.3 Tea data preprocessing ....................................................................................................176
5.4 Dissimilarity-based tea grader .......................................................................................178
5.4.1 Authentication/classification algorithm ..........................................................178
5.4.2 Performance evaluation of the designed dissimilarity-based
tea classifier .....................................................................................................185