CHEMISTRY OF FUNCTIONAL MATERIALS SURFACES AND INTERFACES CHEMISTRY OF FUNCTIONAL MATERIALS SURFACES AND INTERFACES Fundamentals and Applications A H NDREI ONCIUC Elsevier Radarweg29,POBox211,1000AEAmsterdam,Netherlands TheBoulevard,LangfordLane,Kidlington,OxfordOX51GB,UnitedKingdom 50HampshireStreet,5thFloor,Cambridge,MA02139,UnitedStates Copyright©2021ElsevierInc.Allrightsreserved. Nopartofthispublicationmaybereproducedortransmittedinanyformorbyanymeans,electronicor mechanical,includingphotocopying,recording,oranyinformationstorageandretrievalsystem,without permissioninwritingfromthepublisher.Detailsonhowtoseekpermission,furtherinformationaboutthe Publisher’spermissionspoliciesandourarrangementswithorganizationssuchastheCopyrightClearance CenterandtheCopyrightLicensingAgency,canbefoundatourwebsite:www.elsevier.com/permissions. ThisbookandtheindividualcontributionscontainedinitareprotectedundercopyrightbythePublisher (otherthanasmaybenotedherein). Notices Knowledgeandbestpracticeinthisfieldareconstantlychanging.Asnewresearchandexperiencebroadenour understanding,changesinresearchmethods,professionalpractices,ormedicaltreatmentmaybecome necessary. Practitionersandresearchersmustalwaysrelyontheirownexperienceandknowledgeinevaluatingandusing anyinformation,methods,compounds,orexperimentsdescribedherein.Inusingsuchinformationormethods theyshouldbemindfuloftheirownsafetyandthesafetyofothers,includingpartiesforwhomtheyhavea professionalresponsibility. Tothefullestextentofthelaw,neitherthePublishernortheauthors,contributors,oreditors,assumeanyliability foranyinjuryand/ordamagetopersonsorpropertyasamatterofproductsliability,negligenceorotherwise,or fromanyuseoroperationofanymethods,products,instructions,orideascontainedinthematerialherein. LibraryofCongressCataloging-in-PublicationData AcatalogrecordforthisbookisavailablefromtheLibraryofCongress BritishLibraryCataloguing-in-PublicationData AcataloguerecordforthisbookisavailablefromtheBritishLibrary ISBN:978-0-12-821059-8 ForinformationonallElsevierpublications visitourwebsiteathttps://www.elsevier.com/books-and-journals Publisher:MatthewDeans AcquisitionsEditor:KaylaDosSantos EditorialProjectManager:RafaelG.Trombaco ProductionProjectManager:VigneshTamil CoverDesigner:VictoriaPearson TypesetbySPiGlobal,India Preface Inthesetimesitisundeniablethatmostindustriesdeal evenlesssoacquirearelevantpracticalexperience.Nav- increasinglymoreoftenthaneverwithsurfaceandinter- igatingthroughthemazeofscientificliteratureandinfor- facialphenomena.Chemists,physicists,andmaterialsci- mation hard to decipher can be extremely intimidating entists, with background and training in materials, for the future chemists. The same is true in industry; surfaces, and interfaces are in great demand. From my working in industry one realizes that time is of the experience in both industry and academia, I have essence. Chemists and laboratory technicians are observed that students attending courses of a general expected by the company to be innovative and thrive chemistry degree program encounter rather late in their in interdisciplinary fields, learn on the go, and become curriculum courses dealing with interfacial phenomena expertsintheshortestamountoftime,onthejob.There- and chemistry of interfaces. Some curricula have fore,Ifeelthatthisbookwouldbeusefulasatextbookfor included the chemistry of interfaces under different for- students, chemists working in industry, and laboratory mats, at the undergraduate level, some only at master’s techniciansfirstencounteringthechemistryofinterfaces, level, in specialized modules. This can in part be interfacial phenomena, colloids, nanotechnology, poly- explainedbythefactthatChemistryhasbecomeanenor- mer nanoparticle synthesis, etc. I have used myself part mously vast array of scientific domains, branching into of this material in my teachings both in academia and biochemistry, organic chemistry, physical chemistry, trainingoftechniciansfromindustry.Whilethismaterial catalysis,industrialchemistry,inorganicchemistry,ana- used as a coursework material at master’s level has ini- lytical chemistry, materials chemistry, nanotechnology, tially included much more theory and formula, I could polymer chemistry, petroleum chemistry, etc. Due to feel the students had difficulties grasping these, due to fecund research in the past two decades Chemistry of the pressure, lack of time, and an extremely burdening functional materials and interfaces covers a multitude curriculum. I thus preferred to make the hard choice of of intertwined interdisciplinary subjects from the nano- reducingthematerialonlytoessentialtheoriesandadopt scale,suchassynthesisofpolymericandinorganicnano- amoredescriptiveandintuitivepresentation.Oneofthe particles, to macroscopic phenomena such as leitmotifsofthebookistheemphasisonpracticalappli- manufacturing of functional surfaces, food, and con- cations of such theories. After several years in refining sumer products such as cosmetics,detergents,heteroge- this material I believe it came to a format well received neous catalysts, etc. The amplitude and the amount of by the students. In addition, to make it more useful for information in each of these fields put pressure on stu- chemistsperforminginterfacialexperiments,inindustry dents,moresothanseveraldecadesago;itisnowharder or academia, I have tried to add experimental details or for the students to keep track of the newest advances, hints on data interpretation from my own experience. vii C H A P T E R 1 Introduction Interfacesaretheboundariesseparatingtwophasesanddefineallobjectsinthethree-dimensionalworld.Depend- ingon thestrengthof cohesionforces andbinding energiesbetweenatomsandmolecules, thephasescanbegases, liquids,andsolids,definingthephysicalstatesofmatter.Whenthecohesionenergiesbetweentheconstitutingatoms andmoleculesarestrongerthanrandomizingeffectsofthethermalenergy,thephysicalstatechangesfromgastoa condensedphaseofmatter,liquid,orsolid.TheBoltzmanndistributiongivestheprobabilityPthatasystemwillbein a certain state as a function of the state’senergy and temperature: P(cid:1)e(cid:3)E=kT kTfactorisoftenusedasascaleenergyfactorinthemolecularinteractions.Thecohesiveenergiesperatomormolecule at298KcanvaryfromseveralkTbetweengasatoms,between(cid:1)9and(cid:1)23kTinliquidHg(theliquidwiththestrongest cohesiveenergy,57.9kJ/mol[1]),and>50kTinsolidsupto342kTinW(1kT(cid:4)4.05(cid:5)10(cid:3)21J),themetalwiththehigh- est melting point. The kT energy scale factor is introduced and discussed in detail in Chapter 2. Because the most importantinteractionsbetweenmaterialinterfacestakeplaceintheliquid,orbetweenmaterialinterfacesandliquids, the solid-liquid, liquid-liquid, and liquid-air interfaces deserve special attention. The overall balance between the repulsiveandattractiveforcesbetweensolutesandcolloidalobjectsinliquidsmustbecomparativelyequalorlarger than9–23kTtohaveaggregation,adsorption,self-assembly,etc.,andbelow9kTtoobtainstabledispersionsandcol- loids.Asmentioned,liquidsformatT¼298K,whenthecohesiveenergybetweentheconstitutingatomsandmole- culesislargerthan9kT.Whileinthebulkofaliquidtheinteractionforcesofamoleculeoratomarefullysymmetricat interfaces, in contrast, in the topmost layer of molecules or atomsthe interaction forcesare asymmetric.Dueto this asymmetry,acertaintension/forcearisesintheplaneoftheinterface.Thestrongertheinterfacialtension,thestronger theasymmetry.Atcontactbetweentwophases,thetopmostlayerofmoleculesatthephaseboundaryalsointeracts withthemoleculesfromtheotherphase,thisiscalledadhesion.Theadhesionforcesandenergiescounterbalancethe asymmetry of the forcesacting on the topmost molecular layer, i.e., the stronger the adhesion force, the smaller the interfacial tension. If the adhesion force is stronger than the cohesion force, then the interfacial tension disappears, the interface disappears, and the phases become fully miscible, as discussed in Chapter 3. This interfacial tension hasalsothecharacterofanenergydensity,andforpristineinterfacesthisiscausallyrelatedtothecohesionenergy inthebulkmaterial;interfacialenergydensityisabouthalfthecohesionenergyinbulk.Surfaceandinterfacialtension ofliquid-gasandliquidinterfaces,aswellasinterfacialandsurfaceenergyofsolids-liquidandsolid-gasinterfaces,are thoroughlydiscussedinChapter3.Theeffectsoftheinterfacetensioncanbeseeninsmallliquiddropletsormolten metals,astheshapeofthedropletitselfismodeledbythisinterfacialtension.Thesmallworldofinsectsandbugsare particularlyaffectedbytheinterfacialtension.Becausetheirsizeiscomparabletothecapillarylength,whentheshape oftheliquidsisfullydeterminedbyinterfacialtension,notbygravitation,theyhaveadifferentperceptionofthesur- roundingworldthanhumansdo.Interfacialtensioncanhaveadevastatingeffectoninsects;somedrownastheycan- notescapethesurfacetension,butsomehaveadaptedtotakefulladvantageofit.Forexample,smallwaterdroplets canbemanipulatedandtransportedbyantswithoutanyneedforbottlesorglasses,andsomemosquitoshaveadapted on water to straddle along the smooth watersurface, etc. (Fig. 1). Intuitively,theinterfacialtensionisthe2Dequivalentofthecohesionenergyin3D.Interfacialtensionisdiscussedin detail in Chapter 3. However, when the surface and the interface are chemically modified, e.g., withsurfactant adsorbates, the inter- facial tension and energy density of interfaces do not reflect anymore the cohesive energy between the molecules in the bulk phase. Thus, the interface itself can be treated as a thermodynamic system on its own, as discussed in Chapter 7. The interfacial tension and interfacial energy density between phases are now an exclusive reflection of 1 ChemistryofFunctionalMaterialsSurfacesandInterfaces Copyright©2021ElsevierInc.Allrightsreserved. https://doi.org/10.1016/B978-0-12-821059-8.00004-1 2 1. Introduction FIG.1 (A)Antdrinkingwater(https://www.shutterstock.com/image-photo/ant-drinking-water-505718482);(B)mosquitostridingonthesur- faceofwater(https://www.shutterstock.com/image-photo/water-bug-standing-on-surface-calm-1732352752). thelateralinteractionsbetweensurfactantmolecules,polymers,orparticlesadsorbedattheinterface.Infact,under- standinghowtochange theinterfacialtensionandenergydensitybetweenphaseswasoneofthekeyenabling ele- mentsinthedevelopmentofmosttechnologicaladvancesinthe20thand21stcenturies,rangingfromdetergency,oil, and ore extraction to the advancedmanufacturing of processors and advanced electronic devices(seeChapter15). Surfactants andamphiphiles aremolecules, polymers,andotherbuildingblocksof matter thatadsorb spontane- ouslyatinterfaces.Surfactantslowertheinterfacialtensionandenergydensitybetweenphases(water-oil,water-gas, solid-water)independentlyoftheircohesionenergy.Thisenablestheformationofemulsionsandfoamsandincrease insurfacewettability.Earlier,itwasmentionedthatwhentheadhesionforcesarestrongerthanthecohesionforces betweentwoliquids,theinterfacialtensionvanishes,andtheliquidsbecomemiscible.Thefactthat,inthepresenceofa surfactantatinterfaces,theinterfacialtensionisnotanymoreatruereflectionofthebulkcohesionenergyofthephases canbeunderstoodfromthefollowingexample.Iftheinterfacialtensionbetweentwowaterandoilphasesbecomes vanishinglysmallduetotheadditionofasurfactant,thenthetwophasesdonotmix,butthistimetheyformemulsions consistingofveryfineoildropletsdispersedintowater.Chapter4givesanintroductionintothevastfieldofsurfactant chemistry.Emphasisisgivenonsurfactantclassification,surfactantdesign,andstructureactivityrelationship.Insim- ple words, what makes a surfactant effective and how is this reflected in different physicochemical parameters? Chapter4alsointroducesotheramphiphiles,suchasJanusnanoparticlesandsupra-amphiphiles,notingthatamphi- philicity is a scalable property, being active well beyond the molecular scale, well into the nano- and microscales. Amphiphilesandsurfactantshaveanimportantproperty,whichistoself-assembleintosuprastructures.Thisenables thecreationofsmart,reconfigurable,or“environmentallyaware”materials,bottomup,viaself-assemblyprocesses. Most of the surfaces we interact with on a daily basis are solid, such as the screen of the smartphone, the cup of coffee,thewheelofthecar,etc.Thetactilefeel,theadhesion,isdeterminedbytheinterfacialenergybetweenourskin andthesesurfaces.Inthemodernworld,theconceptoffunctionalsurfacesisgainingmorepopularityanditbecomesa requirementintheconsumerproducts.Functionalsurfacescanbedefinedassurfacesthatperformafunction,suchas self-cleaningwindows,orhaveasuperiorproperty,suchasantiadherent,omniphobicantifingerprintinsmartphone screens,forexample,whileothersareicephobic,orantifogging,etc.Thekeyconceptsinunderstandingthephenom- enabehindfunctionalsurfacesandinterfacesareadhesionandwetting.Surfacewettingrefersmainlytotheinteraction ofaliquidwithasolidsurface.Earlier,itwasmentionedthatwhentheadhesionforcesarestrongerthanthecohesion forcesbetweentwoliquids,theinterfacialtensionvanishes,andtheliquidsbecomemiscible.Theinterfacialtensionor energybetweenasolidandaliquidcanalsobealtered,forexample,withsurfactants;however,whentheinterfacial energybetweenasolidandaliquidbecomesvanishinglysmall,thesolidsurfacebecomesfullywettedbytheliquid. Theconverseistrue:whentheinterfacialenergyislarge,thesurfacebecomesnonwetted,andtheliquidpearlsupon thesurfaceofthesolid.Scientistshavelearnedthat,inadditiontointerfacialenergybetweenthesolidandliquid,the geometryoftheinterfaceiskeytodesigningfunctionalsurfaces.Findinginspirationinnature,scientistsfoundoutthat hierarchicalstructuringofthesurfaceofthesolidcanleadtoavarietyoffunctionalsurfaces,suchassuperhydropho- bic, superhydrophilic, icephobic, omniphobic, self-cleaning, etc. Chapter 5 gives an overview of the phenomena of 3 Reference wetting, wettability, and contact angle as the main measurement methods for macroscopic and nanoscale surfaces. Chapter 5 also introduces the several functional surfaces. InChapter6,aseriesofequationspermittingthecalculationofunknownsurfacetension,energy,workofadhesion, etc.fromknownmeasurablemacroscopicparametershavebeengroupedunderthename“fundamentalequationof interfaces.”Theirversatilityinpredictingthevaluesofmanyinterfacialparameters,forexample,interfacialtension, wettability,polarityofthesurface,etc.fromcontactanglemakesthemextremelyusefulinpractice.InChapter7,the surface and interfacial tension are introduced via thermodynamic treatment of the interfacial layer. Although this treatment has no direct practical implications, it gives the theoretical background necessary for the interpretation of interfacialadsorption isotherms andinterfacialtension vs concentration curves for surfactantsand amphiphiles. Chapter 8 treats surface functionalization that can be achieved in different ways, by physical methods such as rougheningofthesurface,orphotolithographicnanopatterning,andbychemicalmethods,byadsorptionofsurfactant molecules. The adsorption of surfactant molecules on solid surfaces involves either chemical or physical bonding, resulting in the formation of a self-assembled monolayer. Several types of chemical bonding and substrates are reviewed.Inaddition,asurfactantmonolayercanbepreparedfirstatthewater-airinterfaceandthentransferredonto the surface of the solid viathe Langmuir-Blodgett and dip-coating methods. Solid-solidinterfacesalsohavepracticalrelevance,especiallyinlayeredelectronicdevices.Solid-solidinterface,in particularthemetal-organicinterface,isthelocusofanothertypeofphenomenaofpracticalimportance,namelythe electrontransfer.Inthepreviouschapters,theinterfacesweretheplacewheredifferentforcesmet.InChapter9,the metal-organicinterfacesaretreatedasthecontactpointbetweenelectronenergylevelsofametal,materialwithdelo- calizedelectronenergylevelscalledbands,andtheorganicmoleculesandpolymerswhoseenergylevelsarediscrete andlocalized.Understandingelectrontransferbetweenmetalelectrodesandorganicconductorsisofpracticalimpor- tance,especiallyforthemanufacturingoforganicphotovoltaics,organiclightemittingdiodes,andotherorganicelec- tronicdevices.Anyofthesedevicesrequiresatleastseverallayersofelectroactiveorganicmaterials,andknowledgeof adhesion,wettability, and interfaces is requiredfor their developmentand manufacturing. Chapters10and11dealwiththeinteractionforcesandenergiesbetweeninterfacesindifferentmedia.Theseinter- actionforcescanberepulsiveorattractiveandtheyarethesameforcesgoverningthemolecularinteractions.Thebal- ancebetweentheattractiveandrepulsiveinteractionforcesisofpracticalimportance,controllingthephenomenaof particleaggregation,colloidstability,particleadsorptiononsurfaces,self-assemblyofnanoparticles,etc.Chapter12 introducescolloids,whicharetheoldesttypeofnanomaterialsknownandaretodayencounteredinthefoodindustry, pharma,andmanyotherconsumerproducts.Colloidsareconstitutedfromfinelydividedparticles,nanoparticles,or liquiddropletsdispersedintoacontinuousmedium.Becausetheirsurface-to-volumeratioisveryhigh,theirbehavior isgovernedalmostexclusivelybytheirsurfaceandinterfacialproperties.Synthesisofcolloidsaswellasstabilitycri- teria is discussed. Asacontinuationonthetopicofcolloids,butdeservingspecial attention,Chapter13introducesthesynthesis of polymeric nanoparticles and polymeric nanostructured interfaces via emulsion polymerizations. As expected, the interfacialaspectsdeterminethetypesofemulsionsandnatureofthenanomaterialsthatcanbesynthesized.Thetypes of emulsions and conditions of formation are briefly reviewed. A case study covers some examples of synthesis of nanostructured interfaces, polymerization of the emulsionsstabilized by amphiphilicparticles. Some nanoparticles, depending on their surface properties,canalso spontaneouslyadsorb atinterfaces; they can formmonolayersandstabilizeemulsions.Thefactorsresponsibleforwhysomeparticlescanadsorbatliquid-liquid, liquid-gas,andsolid-liquidinterfacesarediscussedinChapter14.Onceadsorbedattheinterfacestheparticle-particle interactions leads to the decrease in the interfacial tension. Responsible for this is their lateral interaction, which is governedbythesametypesofforcesasincasesurfactants,andinadditionbyparticlespecificinteractions,capillary floatation,orimmersionforces.Infact,inrecenttimes,nanoparticleshavebeenusedinthesynthesisofphotoniccrys- tals via the Langmuir-Blodgett method andother self-assembly structures. Thelastchapterofthisbookdiscussestheroleofinterfacesinintegratedcircuitmanufacturingviaphotolithogra- phy.Photolithographyistheonlytop-downpreparationmethodofnanomaterialsandnanostructuredsurfaces.Inthe pastfewyears,itevolvedintothemostprecisetechniquetopreparewithlargemachines,structuresassmallas7nm (thegateofthefield-effecttransistor).Inpractice,thephotolithographicmanufacturingprocessofchipsandprocessors requires in-depth knowledge and control of interfacial phenomena such as adhesion, wetting, capillary forces, and interfaces. Reference [1] G.Kaptay,G.Csicsovszki,M.S.Yaghmaee,Anabsolutescaleforthecohesionenergyofpuremetals,Mater.Sci.Forum.414–415(2003)235–240. https://doi.org/10.4028/www.scientific.net/MSF.414-415.235. C H A P T E R 2 Thermal energy scale kT Atthenanoscale,theinteractionenergiesaregenerallyexpressedinmultiplesofkT,alsoreferredtoasthethermal energyscale.Theaveragekineticenergyofagasatomwiththreedegreesoffreedomis3/2kT,isroughlytheenergyof thermal fluctuations at a given temperature (cid:1)1kT. The thermal energy has a randomizing effect contributing to an increaseintheentropyofthethermodynamicsystem.Byexpressingtheenergyofintermolecularinteractionsornano- particle interactions as multiples of kT, the interaction strength can be compared with the randomizing effect of temperature. Next,itisinstructivetofollowthekTinseveraldifferentcontextsaswellasitsorigin.Athermodynamicsystemwill tendtomovetowardalowerenergystatewhenavailable.Whenappliedtochemicalsystems,forexample,asolutein asolutionoragashasachemicalpotentialdefinedastherateofchangeoftheGibbsfreeenergywiththenumberof species in thesystem, atconstant temperature and pressure: (cid:1) (cid:3) δG μi¼ δN (2.1) i T,P Therefore,thechangeinchemicalpotentialofagasorasoluteinasolutionchangeswiththechangeinconcentration. Chemical potentials are important in describing the equilibrium in physicochemical processes such as evaporation, melting,boiling,solubility,interfacialadsorption,liquid-liquidextraction,etc.Thereasonwhythechemicalpotentials aresoimportantintheequilibriumchemistryisthatwhenthetwochemicalsystemsareopenandcanexchangemol- eculesoratoms,therateofchangeoftheirfreeenergywouldbeequalwhenequilibriumisestablished.Take,forexam- ple,themoleculesinthevaporandtheliquidphaseatequilibrium;byequatingthechemicalpotentialsofthemolecule of type iin two phases at equilibrium, or two regions 1and 2, we obtain μ1i +kT lnXi1¼μ2i +kT lnXi2 (2.2) At equilibrium between n different phases, the aboveequality must besatisfiedforall phases: μni +kT lnXin¼constant (2.3) where Xin is the molecular fraction, volume fraction, or concentration of solute in phase n. For pure solution, this is usuallytakenasunity.ThefactorklnXisknownunderdifferentnames,suchastheentropyofmixing,configuration entropy, entropy of confining themolecules, etc. Eq. (2.2) gives us the possibility to calculate the distribution of molecules between two phases, or two regions of space at equilibrium, for example, a liquid in equilibrium with its vapors, or the distribution of the molecules of gas in the atmosphere due to changes in the gravitational potential with altitude. For example, the number density ρzof themolecules of gas in theEarth’satmosphere changeswith the altitude z and themathematical functionthat gives us the possibilityto predict this change is μzi +kT lnρzi ¼μ0i +kT lnρ0i (2.4) where ρiz is the number density of molecule i at altitude z and ρi0 is the number density of molecules of gas i at the surfaceoftheEarthz¼0.Rearrangingtheaboveformulagivesusthebarometricformulaorbarometriclawthatgives the density at the altitudez as afunction of the number density of air molecules at the sea level ρi0: 5 ChemistryofFunctionalMaterialsSurfacesandInterfaces Copyright©2021ElsevierInc.Allrightsreserved. https://doi.org/10.1016/B978-0-12-821059-8.00015-6 6 2. ThermalenergyscalekT (cid:1) (cid:4) (cid:5)(cid:3) (cid:1) (cid:3) (cid:3) μz(cid:3)μ0 (cid:3)ðmgzÞ ρzi ¼ρ0i exp kiT i ¼ρ0i exp kT (2.5) where misthemolecular massand gisthe gravitationalacceleration.Note that thepotentialenergyofthe air mol- eculesmgzis“compared”tothekTatanyheightabovetheEarth’ssurface.Withtheincreaseinthepotentialenergyof themoleculescomparedtokT,lessmoleculesarefoundathigheraltitudes(Fig.2.1).Inotherwords,ifmgzissmall comparedtokT,thenthethermalenergywoulduniformizethedistributionofmoleculeswiththealtitudesuchthat little variation in the number density of air molecules wouldbe registered. The same distribution applies to ions that, for example, carry a charge e between two different regions that have differentpotentialsψ and ψ : 1 2 (cid:1) (cid:3) (cid:3)eðψ (cid:3)ψ Þ ρ2i ¼ρ1i exp k2T 1 (2.6) andthisisknownastheNernstequation.Itisnonethelessimportanttonotethatinteractionsareadditive;forexample, ifthedifferenceinenergybetweentworegionsisgivenbypotential,potentialenergy,andchemicalpotential,thenthe exponentwill be the sum of all these contributions. Theaboveequationsalsogiveusthepossibilitytogaugethestrengthofinteractionbetweenmolecules.Forexam- ple,ifaliquidisinequilibriumwithitsvaporsatstandardconditionsofpressure1atmandtemperature298K,then 1mol of gas will occupy approximately 22.4m3 and a mole of liquid approximately 0.02m3. Then the difference in energy between the liquid and gasstates willbe [1]: Xgas 22:4 μ0gas(cid:3)μ0liquid(cid:1)kT ln i (cid:1)kT ln (cid:1)7kT (2.7) i i Xliq 0:02 i where 1kT is approximately the energy of the thermal fluctuations. Therefore, it can be said that if the interaction strength between molecules in a gas phase at temperature T is larger than 7kT, then it condenses into liquid. Con- versely,ifthecohesionstrength betweenthemoleculesofaliquid becomesmallerthan7kT,thenittransformsinto gas as the cohesion energy is simply too low to hold the molecules together. This alludes to what is known as the Trouton rule, which states that the entropy of vaporization isroughly the same for different kinds of liquids, about 85JK(cid:3)1mol(cid:3)1, which is roughly9.5kT. FIG.2.1 Thebottlewascapped(left)inthemountainandbroughttothegroundlevel(right). 7 2. ThermalenergyscalekT FIG.2.2 VariousinteractionenergiesonthekTscale. The kT criterion can be generalized to gauge the interaction strength between molecules; as stated above, if the interaction between molecules in a medium is larger than 9.5 kT at a given temperature, then this interaction will dominateoverthethermalfluctuationsandformacondensedphase,duetoaggregation,adsorption,orself-assembly. Forinteractionenergies,theuseofthekTenergyscaleisconvenient,as1kTequalsthethermallyinduced3DBrownian motionenergyofamolecule(surfactant,orsolute,orparticle),whichprovidesareferencevalueofinteractionenergies formoleculessticking together vsflyapart,binding vsunbinding,etc.(Fig.2.2).Fig.2.2providesavarietyofinter- action energiesrepresented on the kT energy scale. Similarly,the kT factoris also met in kinetics. For example, the Arrhenius equationper molecule is E k¼Ae(cid:3)kTa (2.8) where Ea isthe activation energy barrier and k is therate constant of the reaction. If, for example, Eais muchlarger thankT,thenthereactionrateisalsoverysmall.Ontheotherhand,iftheenergybarrieriscomparabletokT,thenthe reaction rate ishigh,and the reaction can beactivated by the thermal energy. The kT factor is also encountered in the Boltzmann distribution, which is a probability distribution that gives the probabilityof a state to existfunction of the state’senergy and temperature and it is given by (cid:1) (cid:3) E exp (cid:3) i kT P¼Xn (cid:1) E (cid:3) (2.9) exp (cid:3) j kT j wherePistheprobability ofstatei,oftheenergy Ei,andnisthetotalnumberofaccessiblestatesofcorresponding energiesEj(j¼1(cid:3)n).TheBoltzmanndistributiondescribesthedistributionofparticles,suchasatomsormolecules,over allaccessibleenergystates.Inasystemconsistingofmanyparticles,theprobabilityofpickingarandomparticlewith theenergyEiisequaltothenumberofparticlesinstateidividedbythetotalnumberofparticlesinthesystem,thatis, the fraction of particles occupying the state i: (cid:1) (cid:3) E exp (cid:3) i N kT Pi¼N i ¼Xn (cid:1) E (cid:3) (2.10) total exp (cid:3) j kT j